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a b s t r a c t

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under
development at the Jagiellonian University. The discussed detector offers improvement of the Time of
Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for
sampling in the voltage domain of signals with durations of few nanoseconds. In this paper we show
that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we
incorporate the training signals into the Tikhonov regularization framework and we perform the
Principal Component Analysis decomposition, which is well known for its compaction properties. The
method yields a simple closed form analytical solution that does not require iterative processing.
Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix,
may be easily derived. This is the key to introduce and prove the formula for calculations of the signal
recovery error. In this paper we show that an average recovery error is approximately inversely
proportional to the number of acquired samples.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Positron Emission Tomography (PET) [1–3] is currently one of
the most prominent and promising techniques in the field of
medical imaging. It plays a unique role both in medical diagnos-
tics and in monitoring effects of therapy, in particular in oncol-
ogy, cardiology and neurology. Therefore, notable efforts are
devoted to improve this imaging technique. The best way so far
is to determine the annihilation point along the Line of Response
(LOR) based on measurement of the time difference between the
arrival of the gamma quanta at the detectors, referred to as the
Time of Flight (TOF) difference [4,5]. As it was shown in Ref. [6],
even with the TOF resolution of about 400 ps that is achievable

with non-organic crystals, a signal-to-noise ratio can be
improved substantially in reconstruction of clinical PET images.

In the papers [7–10], a new concept of the TOF-PET scanner,
named J-PET, was introduced. The J-PET detector offers improve-
ment of the TOF resolution due to the use of fast plastic scintilla-
tors. A single detection unit of the newly proposed TOF-PET
detector is built out of a long scintillator strip. Light pulses
produced in the strip propagate to its edges where they are
converted via photomultipliers into electric signals. There are
two main reasons why the TOF resolution may be improved in J-
PET scanner: (i) a very short rise-time and duration of the signals
and (ii) a relation between the shape and amplitude of the signals
and the hit position. The latter feature usually distorts the time
resolution but, when the waveform of the signal is registered, the
information about a change of the shape with the position may
increase the position resolution and indirectly improve also the
resolution of the time determination [11]. However, to probe the
signals, with duration times of few nanoseconds, a sampling time
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of order of picoseconds is required. This can be done well with the
oscilloscopes during the laboratory studies on the prototype, but
in the final multimodular devices with hundreds of photomulti-
pliers, probing with oscilloscopes is not feasible [12,13]. Therefore,
sampling in the voltage domain using a predefined number of
voltage levels is needed. An electronic system for probing these
signals in a voltage domain was developed and successfully tested
[14].

In recent papers [15–17] we have investigated the perfor-
mance of a single unit of a J-PET scanner. Sampling in the voltage
domain at four thresholds was simulated and each pair of wave-
forms was represented by a 15-dimensional vector holding
information about the relative time values of a signal's arrival
at both scintillator ends [15]. In that scenario, the spatial and
time resolutions of the hit position and event time for annihila-
tion quanta were determined to be 1.05 cm and 80 ps (σ),
respectively. It is evident that the spatial and time resolutions
can be further improved primarily by an increase in the number
of threshold levels, as was also concluded e.g. in Ref. [11].
However, the number of channels in the electronic devices is a
very important factor in determining the cost of the PET scanner.
Therefore, the question arises: is it possible to recover the whole
signal based on only a few samples? Equivalently, how many
threshold levels have to be applied to achieve a reasonable
estimation error?

In this paper we propose a novel signal recovery scheme based
on ideas from the Tikhonov regularization [18,19] and compressive
sensing [20,21] methods that is compatible with the signal
processing scenario in J-PET devices. We investigate the quality
of signal recovery based on the scheme with a single scintillator
strip module introduced in Refs. [15,16]. The two most important
aspects of our work involve (i) a development of fast recovery
algorithms and (ii) a statistical analysis of an error level. In practice
the algorithm needs to work in real-time scenarios: during a single
PET examination more than 10 million signals are acquired in just
10–15 min. Moreover, only results for realistic scenarios with
noisy measurements are considered. In particular, as was men-
tioned, the most important part of our investigations is to
determine a dependence of the signal recovery error on the
number of samples taken in the voltage domain. In this paper
the formula for calculations of the recovery error will be intro-
duced and proven.

This paper is organized as follows. We will define the problem
of signal recovery and show briefly the Tikhonov regularization
and compressive sensing methods in Section 2. In the last part of
this section we will introduce the theorem enabling the determi-
nation of the signal recovery error as a function of the number of
samples. The experimental setup of the simplified PET device with
a single scintillator strip that enables us to acquire real signals as
well as the results of their analysis is presented in Section 3. A
detailed analysis of the experimental characteristic of signal
recovery error as a function of the number of samples, as well as
the explanation of the specificity of the signal recovery method in
the application to the J-PET measurement, is provided in Section
3.2. In Section 3.3 we have discussed the limitations of the method
of signal recovery. In particular, we have presented how the
quality of the information needed to recover the signals, and
therefore to estimate the recovery error, varies with size of
training set of fully acquired signals. Moreover, we have demon-
strated that using the recovered waveform of the signals, instead
of samples at four voltage levels alone, improves the spatial
resolution of the hit position reconstruction. A detailed description
of this study is given in Section 3.4. The conclusions and directions
for future work are presented in Section 4.

2. Materials and methods

2.1. Problem definition

Wewish to recover a finite signal y0ARN in a situationwhere the
number M of available samples, denoted as measurement yARM , is
much smaller than the signal dimension N (y is sampled on some
partial subsetΩ, where the cardinality jΩj ¼M). In the compressive
sensing (CS) method [20,21], a sparse expansion x0ARN of sig-
nal y0, evaluated via linear and orthonormal transformation y0 ¼ Ax0,
is considered. In the following we assume that we are given a
contaminated measurement y and then one may write: y¼ AΩx0þe;
where AΩ is a M � N matrix modeling the sampling system,
constructed fromM rows of matrix A that corresponds to the indexes
of y described in the subset Ω, and e is an error term. Therefore,
during the recovery process the information about the measurement
y may be included in the form of the linear system of equations:

y¼ AΩx: ð1Þ
It should be stressed that in the case of presence of noise, repre-
sented by signal e, instead of an exact recovery of signal x0 we will
consider the solution x̂ and by the analogy, instead of signal y0 we
will consider the solution ŷ. Before we look in more detail we may
state that the evaluation of ŷ requires two steps: (i) recovery of the
sparse expansion x̂ and (ii) calculation of ŷ based on the x̂. The first
step of the procedure is crucial.

In the situation where an exact solution cannot be found, CS
method provides an attempt to recover x̂ by solving optimization
problem of the form

x̂ ¼ arg min‖x‖1 such that ‖y�AΩx‖2rϵ

where ϵ is the size of the error term e. The l1 minimization
approach provides a powerful framework for recovering sparse
signals. Moreover, the use of l1 minimization leads to a convex
optimization problems for which there exist a variety of greedy
approaches like Orthogonal Matching Pursuit [22] or Basis Pursuit
[23]. Other insights provided by CS are related to the construction
of measurement matrices (AΩ) that satisfy the Restricted Isometry
Property [24,25]. For an extensive review of CS the reader is
referred to Refs. [20,21,24,25].

We will incorporate from the CS framework to our scheme only
the idea of conducting the experiment, formulated by a linear
system of equations as given explicitly in Eq. (1). The problem
formulated by Eq. (1) alone is essentially underdetermined, and is
the so-called ill-posed [26]. As in the case of the CS method, it is
necessary to incorporate further assumptions or information about
the desired solution in order to stabilize the problem. As an
alternative to the CS theory, one may use the regularization
methods [18,19,27,28]. The Tikhonov regularization (TR) method
[18,19] is the most suitable for our problem. Here, the idea is to
define the regularized solution x̂ as the minimizer of the following
expression:

x̂ ¼ arg minfðy�AΩxÞTR�1ðy�AΩxÞþðx�μÞTP�1ðx�μÞg: ð2Þ
In Eq. (2), both signals y and x are assumed to be given with
multivariate normal (MVN) distributions:

y�N ðAΩx;RÞ ð3Þ

x�N ðμ; PÞ ð4Þ
where AΩx and R are the mean value and covariance matrix of a
measured signal y, respectively, μ and P are the mean value
and covariance matrix of a prior distribution of x0, respectively.
The covariance matrix R in Eq. (3) is diagonal with the values on
the diagonal equal to the measurement error variances σ2
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(as explained in Section 2.4). With the introduction of the second
term to the optimization problem in Eq. (2), an additional
information from a training set of fully sampled signals y0 is
provided. The prior distribution of sparse representation x0 (see
Eq. (4)) is evaluated based on the linear transformation of the
training set of signals y0 by using the Principal Component
Analysis (PCA) decomposition [29]. Thus, in order to find the
sparse representation x̂ of a given measurement y, as a solution of
Eq. (2), one needs to specify first the prior distribution of x0.

Beside the advantage of including the additional information from
training signals, a further benefit of the TR approach is that the
problem in Eq. (2) has an optimal solution which can be determined
explicitly. In Section 2.2 we will evaluate the orthonormal matrix A, as
well as the parameters of the prior distribution of signal x0, see Eq. (4),
via the PCA decomposition of training signals y0. It should be stressed
that these parameters are calculated only once, at the preparation
stage of the procedure. Thus, the same matrix A; P and vector μ, are
used to recover a signal x̂ for each measurement y. An example of the
idea of using the PCA decomposition of a training data set in a similar
problemmay be found in Ref. [30]. In Section 2.3 the solution of the TR
formula described in Eq. (2), as well as its properties, will be provided.
Finally in Section 2.4 we will introduce the theorem enabling the
determination of the signal recovery error as a function of the number
of samples.

2.2. Principal Component Analysis

PCA is a statistical study, based on the orthogonal transforma-
tion, to convert a set of signals into a set of linearly independent
variables, such that the variance of the projected data is max-
imized. For the training data matrix of fully sampled signals

Y ¼ ½ðy0ð1Þ �mÞj ðy0ð2Þ �mÞj…j ðy0ðLÞ �mÞ� ð5Þ

where m is the mean of the aligned L training signals y0, the PCA
coordinates X ¼ ½x0ð1Þ jx0ð2Þ j⋯jx0ðLÞ� are given by

X ¼ ATY : ð6Þ
The matrix A¼ ½að1Þ jað2Þ j⋯jaðNÞ� in Eq. (6) is calculated in such a
way that the projection of the data matrix Y with successive basis
vectors að1Þ; að2Þ;…; aðNÞ inherits the greatest possible variance in
the data set Y. Thus, the first basis vector has to satisfy

að1Þ ¼ argmax‖aTY‖22

where ‖a‖2 ¼ 1 (the orthonormality is restricted). The kth compo-
nent can be found by subtracting the first k�1 principal compo-
nents from data set Y:

Yk ¼ Y�
Xk�1

l ¼ 1

aðlÞa
T
ðlÞY

and then finding the basis vector which extracts the maximum
variance from this new data matrix

aðkÞ ¼ arg max‖aTYk‖22

where ‖a‖2 ¼ 1.
In the case discussed in this paper, the matrix A is evaluated

based on the PCA decomposition of the training set of signals y0

and therefore the parameters of the MVN distribution of x0 (μ; P)
are estimated based on data matrix X, constructed according to Eq.
(6). The empirical covariance matrix P of data set X may be
evaluated as

P ¼ E½X � XT �: ð7Þ
The covariance matrix P is diagonal, with values sorted in non-
increasing order. Since the mean of the signals in data set Y is
equal to 0, see Eq. (5), the mean μ¼ 0.

2.3. Tikhonov regularization

In the previous section we have shown how the prior informa-
tion from a training set of signals y0, i.e. the orthonormal matrix A,
and the parameters of the prior distribution of signal x0, may be
introduced to the TR framework. In this section we will derive a
sparse solution x̂ of Eq. (2), and its covariance matrix, denoted
hereafter as S, for a particular measurement y, based on the TR
assumptions [18,19]. The posterior probability density function
(pdf) of the signal x conditional on measurement y, namely pðxjyÞ,
can be computed after combining the prior distribution of x, p(x),
likelihood of measurement pðyj xÞ, and p(y) via the well-known
Bayesian rule:

pðxjyÞ ¼ pðxÞ � pðyjxÞ
pðyÞ : ð8Þ

To describe the MVN distribution in Eq. (8) we will use the
following notion:

N ðzju;Q Þ ¼ 1

ð2πÞN=2jQ j1=2
exp �1

2
ðz�uÞTQ �1ðz�uÞ

� �

where z is an N-dimensional variable with mean value u and
covariance matrix Q. Hence, the marginal and conditional densities
of x and y from Eq. (8) are given as follows:

pðxÞ ¼N ðxjμ; PÞ ð9Þ

pðyj xÞ ¼N ðyjAΩx;RÞ ð10Þ

pðyÞ ¼ α ð11Þ

pðxjyÞ ¼N ðxj x̂; SÞ: ð12Þ

Eqs. (9) and (10) result directly from the previously described Eqs.
(4) and (3), respectively. Eq. (11) shows that the probability p(y) is
independent of x, and therefore serves as a normalization constant.
The posterior probability in Eq. (12) can be described exclusively
by its first two moments (x̂; S) because a Gaussian pdf is self-
conjugate and the pdfs on the right hand side of Eq. (8) are
Gaussian. After some simple calculations the equations for x̂ and S
are given by [31]

x̂ ¼ P�1μþAT
ΩR

�1y
� �

� P�1þAT
ΩR

�1AΩ
� ��1

ð13Þ

S¼ P�1þAT
ΩR

�1AΩ
� ��1

: ð14Þ

It is worth noting that the solutions in Eqs. (13) and (14) are
analogous to Kalman filter update equations (cf. Refs. [32,33]). It
can be easily shown that x̂ is not only the minimum mean square
error (MSE) estimator (see Eq. (2)) but also the maximum a
posteriori (MAP) estimator, i.e.

x̂ ¼ arg maxfpðxjyÞg:

It should be stressed that all the information from the training
set of signals y0(matrix A; P and vector μ) and from the oscilloscope
specification (matrix R) are evaluated only once, at the preparation
stage. Thus, the sparse signal x̂ may be found, according to Eq. (13),
as a linear combination of the previously defined parameters and a
given measurement y. However, the evaluation of the covariance
matrix S, according to Eq. (14), does not require the information
about the measurement y, and may be provided at the preparation
stage. This fact opens a possibility for an estimation of the
theoretical value of the recovery error. This idea will be presented
in the next section.
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2.4. Analysis of the signal recovery error

As mentioned at the beginning of Section 2, the evaluation of
the recovered signal ŷ requires two steps: (i) recovery of the
compact representation x̂ via Eq. (13) and (ii) calculation of ŷ as
the solution

ŷ ¼ Ax̂þm ð15Þ
where m and A are derived by PCA decomposition. One of the
benefit of using the TR approach is that it provides an easy way to
obtain the error term of the recovered signal ŷ. We assume for the
sake of simplicity that m in Eq. (15) is known exactly. Since the
matrix A is orthonormal, we have ‖ŷ�y0‖2 ¼ ‖x̂�x0‖2, and there-
fore we may focus on the recovered signal x̂ error.

In multivariate statistics, the trace of the covariance matrix is
considered as the total variance. We will denote the trace of
covariance matrix S as σx2. It is worth noting that σx2 is the mean
value of the recovery error squared norm ‖x̂�x0‖22. Let P(k) be the
kth diagonal element of covariance matrix P (see Eq. (7)). Find the
smallest value D, and largest value τ (with constraints D40 and
τ40) such that for each 1rkrN:

PðkÞrD � e�τk: ð16Þ
From Eq. (16) one may see that τ controls the decrease rate of P(k):
the greater the τ, the faster the decreasing of P(k) and better the
compressibility of signal x. The characteristics D and τ of the prior
distribution of signal x and a standard deviation of noise (σ) enable
us to provide the formula for average value of the recovery error
σx2. For this purpose we formulate the following theorem:

Theorem. Suppose that D and τ describe the decrease rate of
variances of signal x according to Eq. (16). The signal x may be
recovered as the solution to Eq. (13) with an average value of error

σ2
x �

σ2N
Mτ

� log σ2NþMD
σ2N

� �
: ð17Þ

Eq. (17) enables us to estimate the number of required samples
M of signal to achieve a preselected mean recovery error. Intui-
tively, the σx2 is also closely related to the compressibility of signal
x, and from Eq. (17) one may observe that an average recovery
error is inversely proportional to the constant value τ. The proof of
the theorem is given in the Appendix.

3. Experimental results

3.1. Experimental setup

In this section, we present results illustrating the proposed
approach and demonstrating that the number of samples (M)
required to sense the data can be considerably less than the total
number of time samples (N) in the reference signal y0. We
investigate the performance of the algorithm using a data set of
reference signals registered in single module scintillator strip EJ-
230 [34] of J-PET device [16].

The scheme of the experimental setup is presented in Fig. 1.
The 30 cm long strip was connected on two sides to the R4998
Hamamatsu [35] photomultipliers denoted as PM1(2). A series of
measurements was performed using collimated gamma quanta
from a 22Na source placed between the scintillator strip and the
reference detector. The collimator was located on a dedicated
mechanical platform allowing it to be shifted along the line
parallel to the scintillator strip with a submillimeter precision.

The 22Na source was moved from the first to the second end in
steps of 6 mm. At each position, about 5000 pairs of signals from
PM1 and PM2 were registered in coincidence. These signals were
sampled using the Serial Data Analyzer (Lecroy SDA6000A) with a
probing interval of 50 ps. To demonstrate the recovery perfor-
mance only signals from PM1 were investigated (the procedure
with signals from PM2 would be the same). The length of a signal
y0 was set to 15 ns, which corresponds to N¼300 samples (see
Figs. 5–7 for details).

We wish to make one comment about the data acquisition. The
signal captured by an oscilloscope is length N, where each sample
is contaminated with white noise with 0 mean and σ2 variance.
The simulation of measurement y is then based on selecting M
samples according to the subset Ω. However, in order to extract
the reference, noise-free signal y0, the acquired N samples have to
be subjected to low pass filtering. In the following procedure we
will need the signals y and y0 as well.

Since the absolute registration time has no physical meaning,
we synchronize the signals in data set Y in such way that the fixed
index number 20 corresponds to the amplitude of �0.06 V on the
rising slope of each signal (see Figs. 5–7). The complete data set Y
contains more than 200 000 signal examples and was divided into
two disjoint subsets: training and testing parts, with a ratio 9:1,
respectively. In the training data set only the signals y0 are stored,
while in the testing one both signals y and y0 are required.

3.2. Error recovery investigations

The training data set Y was transformed via PCA into a new
space X according to the scheme shown in Section 2.2. The
evaluated matrix A, as well as the mean value signal m, were
saved and used in the further analysis during the signal x recovery
from the testing data set. In order to find the theoretical value of
mean recovery error σx2, introduced in Eq. (17), one needs to
specify additionally the following parameters: σ;D; τ (we will
investigate the error σx2 as a function of the number of samples
M). The standard deviation of the noise (σ) was estimated based
on the training data set Y to c.a. 0.015 V, which is consistent with
the oscilloscope specification. The unknown parameters D; τ were
found after the analysis of diagonal elements of the covariance
matrix P of the training data set X. The smallest value D and the
largest value τ for which the condition from Eq. (16) was met, are
equal to 4.2 V2 and 0.33, respectively.

It should be stressed that, for a given number of samples (M),
the expected value of σx2 in J-PET scenario would be slightly greater
than for the one described by Eq. (17). The reason is that in the J-
PET scenario the signals are probed in the voltage domain and
hence in the case when the amplitude of the signal is smaller than
the threshold level, not all the samples of the signal are acquired
(see Fig. 7, e.g.). Therefore, in order to evaluate the theoretical
function of mean recovery error in the J-PET scenario, both, the
values of the threshold levels as well as the distribution of signal
amplitudes have to be specified first.

In the first step of the analysis the distribution of signal
amplitudes was investigated. The experimental cumulative dis-
tribution function (cdf), based on the signals registered at all the
positions along the scintillator strip, is presented in Fig. 2. The
amplitudes of the signals are in the range from �0.3 V to �1.0 V.Fig. 1. Scheme of the experimental setup.
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In order to suppress events when gamma quanta were scattered
inside the patient's body, in the current PET scanners (detecting
gamma quanta based on photoelectric effect) the energy window,
typically in the range from 350 keV to 650 keV, is applied [36].
Such window suppresses scattering under angles larger than 601.
The J-PET detector is made of plastic scintillators which are
composed of carbon and hydrogen. Due to the low atomic number
of these elements the interaction of gamma quanta with energy of
511 keV is predominantly due to the Compton effect whereas the
interaction via photoelectric effect is negligible. In order to sup-
press scattering in the patient through angles larger than 601, in
the J-PET scanner only the signals with energy deposition larger
than 200 keV will be accepted [9]. Therefore, the signals with
amplitude smaller than a �0.3 V are filtered out, and a sharp edge
of the spectrum for this value is seen in Fig. 2.

In the next step, based on the fully sampled signals stored in
testing data set Y, we simulate a front-end electronic device that
probes the signals at preselected number of voltage levels, both on
the rising and falling slopes. We carried out the experiments for
different numbers of voltage levels from 2 to 15. In each case, the
level of �0.06 V on the rising slope was applied for triggering
purposes, as was mentioned in Section 2.1. The remaining ampli-
tude levels were adjusted after a simple optimization process,
where the goal was to minimize the experimental mean recovery
error σx2. At each step of the optimization process, for a fixed
number (M) and values of voltage levels, signal recovery was
conducted in the following way. For each 300 signal samples from
testing data set Y, all samples at preselected voltage levels were
selected to simulate the measurement y. Since the amplitude of
the signal may be less than certain voltage levels, not all samples
had to be registered. Therefore, for each processed signal, the
number of acquired samples would be smaller or equal to M. In
order to remove the mean value from the measurement y, the
corresponding values of signal m were subtracted from signal
samples from the oscilloscope. The measurement matrix AΩ was
formed from the proper rows of matrix A. The signal x̂ was
recovered using Eq. (13), and finally the signal ŷ was derived as
the linear solution of Eq. (15). With optimized values of voltage
levels, theoretical and experimental curves describing the mean
recovery error σx2 as a function of the number of samples (M) in the
J-PET scenario are evaluated and shown in Fig. 3.

An empirical mean value of σx2 is marked with a solid blue line
in Fig. 3 and is very similar to the expected, theoretical

characteristic that takes into account the distribution of ampli-
tudes and optimized values of voltage levels (solid green line). The
difference between those two functions is larger for small values
of M (about 10% of σx2) and almost negligible for greater numbers
of samples. However, both of these functions differ significantly
from the theoretical characteristic of σx2, calculated according to
Eq. (17), marked with dashed green line in Fig. 3. In the following
we will investigate only the case with a four-level measurement,
which is of most importance since the currently developed front-
end electronic allows one to probe the signals at four fixed-voltage
levels. It is evident that this comparison of results may be
performed in the same way for all values of M.

The optimized values of the four voltage levels are: �0.06, �0.20,
�0.35 and �0.60 V. Since, the index of the sample taken at the
voltage level of �0.06 V at the rising slope is common for all signals,
the effective number of simulated samples at rising and falling edges
is equal to M¼7. From Fig. 3, the theoretical value of the average
recovery error σx2 for M¼7 is c.a. 0.173 V2 (dashed green line).
However, based on the experimental distribution of amplitudes of
the signals, presented in Fig. 2, only for about 30% of signals would all
samples from four thresholds be available (amplitudes larger than
�0.60 V). Moreover, for signals with amplitudes in the range from
�0.35 V to �0.60 V (about 55% of signals), the effective number of
samples is equal to 5 and the theoretical value of σx2 increases to
0.228 V2. For the rest of the considered signals, with amplitudes in
the range from �0.30 V to �0.35 V (about 15% of signals), the
effective number of samples is equal to 3 and the theoretical value of
σx2 is 0.346 V2. Finally, the expected mean value of σx2 in the J-PET
scenario for four voltage levels is equal to c.a. 0.227 V2 and is much
more comparable with the experimental value (equal to c.a. 0.264 V2)
than the theoretical value for 7 samples.

The analysis of the characteristic of σx2 allows us to indicate the
proper number of samples needed. The function σ2

x ðMÞ is approxi-
mately proportional to 1/M but, due to the logarithmic factor (see
Eq. (17)), it drops rapidly until M reaches the value of about 10.
Further increase in the number of samples does not provide any
significant improvement in the signal recovery. This is very
important information since the currently developed front-end
electronic enables one to probe the signals at four fixed-voltage
levels, providing eight time values for each signal.

The distribution of the recovery error ‖x0� x̂‖22 evaluated using
all signals from the testing data set for optimized values of four
voltage levels is shown in Fig. 4.

Fig. 2. Experimental cumulative distribution function of signal amplitudes.
Fig. 3. Comparison of average recovery errors σx

2 as a function of the acquired
samples (M). Meaning of the curves is described in the text. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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From the empirical characteristics of ‖x0� x̂‖22 one may see that
the recovery error is concentrated between 0 and 0.4 V2 with the tail
reaching the value 1.5 V2. As was shown in Fig. 3, the mean value in

the experiment is equal to ca. 0.264 V2. In addition, the standard
deviation and the median of a probability distribution of a recovery
error are equal to ca. 0.192 V2 and 0.206 V2, respectively. The three
signal recovery examples, with small, medium and large recovery
errors, are shown in Figs. 5, 6 and 7, respectively.

The values of the signal recovery errors in Figs. 5–7 are as
follow: 0.082, 0.266, 0.814 V2. As expected, the worst situation
takes a place when the amplitude of the signal is slightly below
the selected threshold level (see Fig. 7) or where it is much larger
than the highest sampling voltage. In our sampling scheme the
highest recovery error occurs for signal amplitudes in the range
from �0.55 to �0.6 V and from �0.95 to �1 V (where �1 V
corresponds to the maximum amplitude, see Fig. 2). Unfortunately,
there is no possibility to overcome these phenomena when only a
few samples of the signal are measured. On the other hand, it can
be seen that the mean value of the error ‖x0� x̂‖22 is on an
acceptable level. In a typical situation the signal is recovered quite
accurately (see Fig. 6).

3.3. Method limitations

Although, the experimental and theoretical functions describ-
ing the recovery errors in the J-PET scenario, presented in Fig. 3,
are largely consistent, there are at least two aspects of the method
that need to be investigated:

(1) the assumption about the prior MVN distribution of signals x0

(see Eq. (4)), which has an impact on the difference between
the values of the σx2 errors,

(2) the evaluation of the empirical values of σx2 as a function of the
size of training set of signals y0.

In order to verify the assumption about the normality of signals
x0, we have used the Kolmogorov–Smirnov test on each of N
principal components in the training data set X, evaluated accord-
ing to Eq. (6). In each dimension, the mean value as well as the
standard deviation were estimated for all the samples. The
significance level used in this study was 0.05. The hypothesis,
regarding the normal distribution form, was rejected only for the
first principal component that holds about 40% of the signal
energy. However, in that case the calculated value from the
statistical test was not significantly higher than the critical value.
From this analysis one infers that the signals stored in matrix X are
not exactly normally distributed. This fact may contribute to the
difference between the theoretical and empirical values of σx2.

Fig. 4. Distribution of the recovery error evaluated using signals from the testing
data set.

Fig. 5. Signal recovery example: the recovery error is about 0.082 V2.

Fig. 6. Signal recovery example: the recovery error is about 0.266 V2.

Fig. 7. Signal recovery example: the recovery error is about 0.814 V2.
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It should be stressed that all the information needed to recover
the signal x̂ (matrix A; P and vector μ – see Section 2.2 for details),
and therefore the empirical values of σx2, were evaluated based on
large set of about 200 000 training signals y0. In the following we
will analyze the influence of the size of the training set of signals
on the value of the signal recovery error. We conduct the experi-
ment for a wide range of number of signals y0 in the training set
from 50 to 200 000. In each case we investigate only the four-level
measurement y (M¼7). The results of the analysis of the empirical
values of σx2 as a function of the size of the training set of signals y0

are shown in Fig. 8.
The parameters of the model that were used for the signal

recovery in the study described in Section 3.2 were based on
200 000 training signals, which corresponds to the value of the
empirical recovery error of 0.264 V2. From Fig. 8 one may observe
that reducing the number of training signals down to about 10 000
does not influence the quality of the recovery of signal x̂; the σx2

error is almost constant in that range. However, for smaller
number of training signals, the σx2 error increases rapidly and the
recovery of the signal x̂ becomes increasingly less accurate.

3.4. Spatial resolution of the hit-position reconstruction

In this section, we will incorporate the method for hit-position
reconstruction, described in Ref. [15], in order to evaluate a
position resolution of the J-PET scanner with fully recovered
signals. We will compare the spatial resolutions obtained from
the original raw-signal (300 samples) to those from the com-
pressed signal (e.g. 8 samples). We have carried out experiments
with numbers of voltage levels from 2 to 15, which corresponds to
the number of samples M from 3 to 29.

For a single event of gamma quantum interaction along the
scintillator strip, a pair of signals at two photomultipliers is measured
in a voltage domain. Next, the signals are recovered according to the
description in Section 2, and finally, an event is represented by a 600-
dimensional vector. For a fixed number of voltage levels a two-step
procedure of the position reconstruction was performed. First, the
scintillator's volume was discretized and for each bin a high statistics
set of reference 600-dimensional vectors was created. The objective of
the second part of the procedure is to classify the new event to one of
the given sets and hence determine the hit position. For more details
about conducting the experiment of hit position reconstruction, the
reader is referred to Ref. [15].

We have conducted the test on the same data set and under the
same conditions as described in Ref. [15], where the spatial

resolution was reported to be equal to 1.05 cm (σ). The spatial
resolutions derived from the recovered signals as a function of the
number of samples M included in the recovery process are shown
in Fig. 9.

In Fig. 9 only the region for small M, from 3 to 29, is shown, but
it has to be stressed that the spatial resolution derived from the
original raw-signal (300 samples) is equal to 0.933 cm (σ) and is
almost the same as for M¼29. For the most interesting case, with
four voltage levels (M¼7), the spatial resolution is slightly worse
than that for the fully sampled signal and is equal to 0.943 cm (σ).
On the other hand, even in that case the spatial resolution is about
0.1 cm better in comparison to the one evaluated based on signals
in the voltage domain alone.

4. Conclusions

In this paper a novel scheme of recovery of signals generated in
plastic scintillator detectors in the J-PET scanner was introduced.
The idea of signal recovery is based on the Tikhonov regularization
theory, that uses the training data set of signals. In these studies
we assumed that training signals come from a MVN distribution.
The compact representation of these signals was provided by the
PCA decomposition.

One of the most important aspect of our work considers a
statistical analysis of an error level of recovered signals. In this
work a dependence of the signal recovery error on the number of
samples taken in the voltage domain was determined. It has been
proven that an average recovery error is approximately inversely
proportional to the number of samples and inversely proportional
to the decrease rate of variances in the covariance matrix. In the
experimental section, the method was tested using signals regis-
tered by means of the single detection module of the J-PET
detector. It was shown that the PCA basis offers high level of
information compression and an accurate recovery may be
achieved with just 8 samples for each signal waveform. It is worth
noting that the developed recovery scheme is general and may be
incorporated in any other investigation where a prior knowledge
about the signals of interest may be utilized.

In the experimental section we have demonstrated that using the
recovered signals improves the hit-position reconstruction. In order
to evaluate a position resolution of the J-PET scanner with fully
recovered signals, we have incorporated the method for hit-position
reconstruction, described in Ref. [15]. In the cited work, the spatial
resolution evaluated on the same data set and under the same

Fig. 8. Influence of the size of the training set of signals y0 on the average recovery
error σx2.

Fig. 9. The spatial resolution as a function of the acquired samples (M).
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conditions, based on 8 samples in voltage domain, without a
recovery of the waveform of the signal, was reported to be equal to
about 1.05 cm (σ). Our experiment shows that the application of an
information from four voltage levels to the recovery of the signal
waveform can improve the spatial resolution to about 0.94 cm (σ).
Moreover, the obtained result is only slightly worse than the one
evaluated based on all 300 samples of the signals waveform. The
spatial resolution calculated under these conditions is equal to about
0.93 cm (σ). It is a very important information since, limiting the
number of threshold levels in the electronic devices to four leads to a
reduction in the cost of the PET scanner.

Future work will address a development of the more advanced
method to define the hit-position and event time for annihilation
quanta in the J-PET detector based on the recovered information. We
believe that, with fully recovered signals, there is still scope for
improvement in the time and position resolution of the J-PET scanner.
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Appendix A

In order to prove the theorem we assume, for the sake of
simplicity, that the matrix A has normally distributed elements
with zero means and 1=N variances. These values of the para-
meters of normal distribution ensure that the matrix A is ortho-
normal. Hence, based on Eq. (14), the matrix S is given by

S¼
 
P�1þσ2M

N
1

!�1

: ð18Þ

The σx2 is equal to the trace of the matrix S and hence:

σ2
x ¼

XN
k ¼ 1

σ2NPk;k

σ2NþMPk;k

¼ σ2N2

M
1�σ2

XN
k ¼ 1

1
σ2NþMPk;k

 !
: ð19Þ

The sum in the last term in Eq. (19) may be approximated by a
definite integral. In the following we will use for the calculations a
basic, rectangle rule, and

XN
k ¼ 1

1
σ2NþMPk;k

�
Z Nþh

1�h

1
σ2NþMPðkÞ dk¼ I

where h¼ 1=2. At the very beginning we assumed that the
function P(k) has the form: PðkÞ ¼D � e� τk (see Eq. (16)). We will
perform the integration using the substitution t ¼ e�τk. Without
any significant loss of precision, we change the integration limits
from ½1�h;Nþh� to ½0;N�. The calculations of the integral I will be
as follows:

I¼
Z 1

e� τN

1
σ2NþMDt
� �

τt
dt

¼
Z 1

e� τN

1
σ2Nτt

dt�
Z 1

e� τN

MD
σ2Nτ σ2NþMDt

� � dt
¼ 1
σ2Nτ

log ðtÞj1e� τN � log ðσ2NþMDtÞj1e� τN

� �

� 1
σ2Nτ

Nτþ log
σ2N

σ2NþMD

� �� �

and thus

σ2
x �

σ2N2

M
1�σ2I
� �

� σ2N
Mτ

� log σ2NþMD
σ2N

� �
:
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