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Abstract

Objectives: This paper presents the prospects for increasing the availability of PET 
diagnostics by combining low-cost, lightweight and easily portable modular J-PET 
with the 44Ti/44Sc generator. 
Methods: J-PET is constructed based on the low-cost axially arranged plastic 
scintillators that may enable the construction of PET scanners 5 to 10 times less 
expensive compared to current PET systems, which are based on crystal scintillators. 
Development of the radionuclide 44Ti/44Sc generator with the 60-year half-lifetime 
would enable long-term onsite production of 44Sc labelled radiopharmaceuticals, 
eliminating the need for extensive and costly infrastructure typically associated with 
nuclear medicine. Presently applied 68Ge/68Ga generators with the 270 days half- 
-lifetime require renewal every year. The 44Ti/44Sc generator could, in principle, be 
purchased once every half century. 
Results: The lightweight and portable J-PET scanner, combined with the 44Ti/44Sc 
generator, can be deployed in remote and underserved regions, thus democratising 
access to advanced medical-imaging techniques. 
Conclusions: This novel concept shows the transformative potential of combining 
innovative J-PET technology with the 44Ti/44Sc generator to make advanced diagnostics 
more accessible and affordable worldwide, especially benefiting millions of patients in 
low- and medium-income countries, and driving further innovations in medical imaging.
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medical centres [1, 10, 11]. As illustrated in Fig. 1., almost half of 
the world’s countries still lack access to PET imaging, with many 
others having far fewer scanners per million people compared to 
nations such as the United States or those in Europe. According 
to the IAEA Medical Imaging and Nuclear Medicine (IMAGINE) 
database [12], the average number of PET scanners globally is 
approximately 0.7 per million people, with 5,672 PET scanners 
spread across 109 countries. In contrast, the United States has 
about 5.41 PET scanners per million people [13], which is more 
than seven times the global average. This disparity highlights the 
challenges faced by countries with limited healthcare infrastructure, 
where access to advanced diagnostic tools such as PET is often 
restricted. Such limitations affect the technique’s potential in early 
diagnosis, where timely and accurate detection can significantly 
alter disease treatment and patient outcomes. Additionally, the 
infrastructure required to support traditional PET operations is 
extensive, requiring onsite or regional cyclotrons for radionuclide 
production, and rapid transport systems for radiopharmaceutical 
distribution, restricting PET’s availability, especially in less 
developed regions.

Efforts to overcome these barriers include developing more cost- 
-effective and portable PET systems. Innovations such as the 
Modular Jagiellonian Positron Emission Tomography (J-PET) 
scanner [10, 14–16] are extending PET technology to a broader 
range of settings, potentially reaching underserved areas. 
Advances in radiopharmaceuticals also contribute to this shift 
by improving tracer production efficiency and developing longer- 
-lasting tracers, thereby reducing costs and logistical complexities. 
One promising solution in this direction is the use of scandium-44 
(44Sc) radionuclide [17], which offers longer half-life and stable 
decay properties suitable for labelling radiopharmaceuticals in 
PET imaging. These developments not only aim to enhance PET’s 
diagnostic accuracy but also broaden its accessibility.

MATERIALS AND METHODS
Modular J-PET

The modular J-PET scanner represents a significant innovation 
in PET technology, using plastic scintillator strips instead of the 
traditional crystal scintillator-based detectors [10, 14–16] (Fig. 2.). 
This choice of material significantly reduces scintillation light 
attenuation – which is more than an order of magnitude lower than 
in crystal scintillators – allowing effective light transport even over 
a few meters [10, 18]. The scintillators are arranged axially and 
are each read at both strip ends by four Silicon Photomultipliers 
(SiPMs), as shown in Fig. 3. When gamma quanta interact within 
a scintillator strip, this interaction generates scintillation photons, 
which, after reaching the end of the scintillator, generate electric 
signals in eight SiPMs – four at each scintillator end. The electric 
signals are used to determine timestamps by the dedicated 
electronics units – two timestamps at each leading and trailing 
edge of each SiPM signal. These timestamps are crucial for 
accurately reconstructing the position and time of a 511 keV 

LIST OF ABBREVIATIONS
CT – computed tomography 
GATE – Geant4 Application for Tomographic Emission 
HER2 – human epidermal growth factor receptor 2  
J-PET – Jagiellonian positron emission tomography  
LYSO – lutetium-yttrium oxyorthosilicate 
MRI – magnetic resonance imaging 
NEMA – National Electrical Manufacturers Association 
PET – positron emission tomography  
SiPMs – silicon photomultipliers

BRIEF DESCRIPTION OF THE WORK
This paper explores how the integration of the cost-effective 
modular J-PET scanner with the long-lasting 44Ti/44Sc generator 
can make PET imaging more accessible and affordable in low- 
and medium-income countries. This innovation holds significant 
potential to improve the early detection of disease and treatment 
planning, especially in remote and underserved regions, resulting 
in improved public health outcomes.

INTRODUCTION
Positron emission tomography (PET) is a powerful tool in modern 
diagnostic imaging, providing unique insights into cellular and 
molecular processes within the human body [1]. Since achieving 
the first blurry brain tumour images in the mid-20th century [2] and 
initiating its clinical application in the 1970s [3], PET technology 
has significantly transformed. It has benefited from continuous 
improvements in radiation detection [4] and radio-pharmacy [5], 
which have enhanced its role in medical diagnostics.

Unlike conventional imaging methods, such as X-ray, computed 
tomography (CT), and magnetic resonance imaging (MRI), PET 
offers both anatomical and functional insights into the human 
body [6]. This dual capability is crucial for early disease detection 
and tracking metabolic changes over time, facilitating precise 
treatment planning [1]. PET achieves this by detecting gamma rays 
emitted from a radiopharmaceutical tracer injected into the patient’s 
body, which accumulates in areas of high biochemical activity 
indicative of disease sites, such as tumours [7]. Moreover, PET 
scans are instrumental in diagnosing nervous system disorders, 
including sclerosis, memory disorders and neurodegenerative 
diseases such as Parkinson’s and Alzheimer’s [8]. They are also 
crucial in cardiological assessments, aiding in the evaluation of 
heart functions, effects of myocardial infarction, blood flow and 
abnormalities in heart muscle structure [9].

Despite its advantages, the widespread adoption of PET is 
challenged by the high cost of the scanner and the required 
infrastructure of the traditional, crystal scintillator-based PET 
scanners, as well as the availability of the imaging agents, which 
both limit the spread of the PET technique to well-equipped 
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annihilation photon (produced in the PET detection process) 
interactions. The signal energy data from the SiPMs are precisely 
measured to a timing accuracy of about 20 ps by state-of-the-art 
electronics [19, 20] and then recorded by an innovative, triggerless 
and adaptable data acquisition system [21, 22]. More details 

Fig. 2. �Photographs of the J-PET scanner during clinical testing on patients in Jagiellonian University Hospital, conducted in the spring of 2024. These images illustrate the practical 
application and operational setup of the economical J-PET system. 

about the system and data selection are available in references 
[23, 24]. The possibility of multi-photon imaging with the J-PET 
scanner may also help in improving the specificity of the imaging 
by the application of positronium imaging [25–32] and quantum 
entanglement imaging [33–42].

Fig. 1. �Global distribution of PET and PET/CT scanners. The map illustrates the availability of PET scanners, emphasising disparities between countries. The pie chart on the right 
categorises countries based on the number of the devices per million inhabitants. Data sourced from [12].

WWW.BAMSJOURNAL.COM
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The J-PET system, while currently using a single-layer detector 
configuration (Fig. 2., 3.), is designed with the potential to 
incorporate a multilayer, concentric detector setup in future 
iterations [44]. This multilayer configuration would compensate 
for the lower photon detection efficiency of plastic scintillators, 
which is primarily due to their lower density of 1.0 g/cm³ [45], 
compared to the much denser LYSO crystals (7.0–7.4 g/cm³) [46]. 
The axial arrangement of plastic strips, read out by SiPMs at both 
ends, could optimise the registration efficiency of annihilation 
photons [44]. 

The overall imaging sensitivity of J-PET was estimated using 
GATE simulation software, following standards set by the National 
Electrical Manufacturers Association (NEMA), ensuring that it 
meets clinical and research requirements [16].

The J-PET triggerless data acquisition system [21, 22] allows for 
the detection of all events, including multiphoton annihilations 
and prompt gammas, expanding the potential for flexible event 
selection at the software level [29, 47, 48]. This capability is 
particularly beneficial when using isotopes such as 44Sc, which 
emit prompt gamma rays [49, 50]. The system’s ability to register 
and identify signals from prompt gammas and from both two- and 
three-photon annihilations allows the J-PET to classify events by 
their originating isotopes. This is crucial for conducting multi-tracer 
diagnostics [43, 51, 52] within a single PET scan. Furthermore, the 
detection of an additional prompt gamma from β+γ emitters not only 
improves spatial resolution but also supports the implementation 
of new tissue-sensitive imaging techniques such as positronium 
lifetime imaging [24–32].

These advanced features have enabled J-PET to demonstrate 
the potential for groundbreaking progress in medical diagnostics, 
particularly in positronium imaging. By simultaneously detecting 
annihilation photons and prompt gamma rays emitted by 
radiolabelled pharmaceuticals, the system provides detailed 
insights into positronium formation and decay. This innovative 
approach enhances PET diagnostics by revealing differences in 
positronium lifetimes between healthy and diseased tissues. Key 
achievements of J-PET include the first ex vivo positronium imaging 
using a phantom composed of cardiac myxoma and adipose tissue 
[28], the first multi-photon PET imaging [47] and, more recently, 
successful in vivo positronium imaging of a glioblastoma brain 
tumour in a clinical setting [29]. These achievements highlight 
the potential of J-PET to open new possibilities for clinical and 
research applications.

44Sc radiopharmaceutical labelling 
and applications
The J-PET’s potential for diagnostic imaging is set to be significantly 
enhanced by the development of a 44Ti/44Sc generator [53] (Fig. 4A.). 
This generator enables the onsite production of 44Sc-labelled 
radiopharmaceuticals and reduces the dependency on extensive 
and costly infrastructure typically required in nuclear medicine. 
The parent isotope, 44Ti, has a long half-life of almost 60 years, 
compared to the 270-day half-life of 68Ge [54] used in conventional 
68Ge/68Ga generators, which require yearly replacement [55]. The 
introduction of the 44Ti/44Sc generator could streamline operations, 
offering a once-in-a-half-century solution that promises to lower 
operational costs and simplify logistics in PET imaging facilities. 

Fig. 3. �(A) Photograph of the modular J-PET detector prototype, consisting of 24 modules, each containing 13 scintillator strips read out by a 1 × 4 SiPM array at both ends. These 
modules can be easily removed for maintenance, and the prototype, with a 50-cm axial field-of-view, weighs approximately only 60 kg, enhancing its mobility and portability 
[10, 23, 29]. The image includes superimposed representations of electron-positron annihilation in the patient’s body, showing two-photon events (red solid arrows) and the 
associated prompt gamma rays (blue dashed arrow) emitted by β+γ radionuclides, such as 44Sc, also indicating the potential for positronium imaging [29] and simultaneous 
double tracer imaging [43]; (B) Depicts the power supply board (green), which supplies voltage individually to each SiPM, and the TDC board (blue), which converts analogue 
signals into digital format, retaining information regarding signal crossings at two preselected constant thresholds [23].

A B
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promising results, highlighting the broad potential of 44Sc in 
personalised medicine [62].

Our vision is that the integration of 44Sc-labelled radiopharma-
ceuticals with J-PET scanner technology could represent a sig-
nificant advancement in nuclear medicine. The 44Ti/44Sc genera-
tor enables onsite production of radiopharmaceuticals, reducing 
the need for extensive infrastructure and frequent replacements. 
The ability to label a variety of biomolecules with 44Sc [57–62] 
enhances the range of diagnostic applications and supports the 
development of targeted imaging agents tailored to individual 
patient needs. This integration not only promises high-quality 
affordable imaging but also facilitates personalised diagnostic 
approaches, improving treatment planning and monitoring thera-
peutic outcomes. The combined use of 44Sc and the J-PET scan-
ner thus offers a comprehensive and cost-effective high perfor-
mance frugal [63] global diagnostic solution for a wide range of 
imaging applications.

DISCUSSION
The integration of the modular J-PET scanner with the 
44Ti/44Sc generator represents a visionary approach to PET 
diagnostics. This combination could aim to address the 
high costs and logistical complexities that have limited the 
global accessibility of advanced diagnostics. By using cost- 
-effective plastic scintillators and a modular design, the 
J-PET scanner could significantly reduce production (by 5 to 
10 times) and operational expenses [10], making PET imaging 

Fig. 4. �(A) The principle functional diagram of the 44Ti/44Sc radionuclide generator illustrates the key components and process flow. The generator consists of a column filled with an 
adsorbent material that contains 44Ti while allowing the elution of 44Sc when a suitable eluent is passed through the system [53]. The eluent carries the 44Sc into a collection vial, 
where it can be used to label radiopharmaceuticals for PET imaging [57, 58] (B) and (C). The decay scheme for 44Ti shows its transformation through 44Sc to the stable ground state 
of 44Ca [54]. The figure presents the simplified decay process (B) and a detailed decay scheme (C), illustrating the emission of prompt gamma. 44Ti decays to 44Sc with a half-life of 
59.1 years. Subsequently, 44Sc decays with a half-life of about four hours.

A B C

This feature is particularly beneficial for medical facilities without 
direct access to a cyclotron, providing a stable and cost-effective 
source of high purity 44Sc for diagnostic imaging. 

The 44Sc radionuclide has a half-life of 3.97 hours (recent 
measurements have slightly adjusted it to 4.04 hours [56]), which is 
almost four times longer compared to the commonly used 68Ga [54]. 
The longer half-life of 44Sc allows for more flexible scheduling 
of radiopharmaceutical preparation and imaging procedures, 
minimising radiation exposure to the patient and personnel. 
Moreover, 44Sc decays (Fig. 4B., 4C.) by emitting positrons with 
a branching ratio of 94.27%, coupled with prompt gamma 
emissions [54]. Its stable decay product, 44Ca, supports the safe 
use of 44Sc in clinical settings [57], eliminating concerns related 
to radioactive residues post-imaging.

One of the key strengths of 44Sc is its ability to form stable 
complexes with various chelators, such as DOTA, DTPA, EDTA 
and NOTA, which are essential for labelling different biomolecules, 
including peptides, proteins and small molecules [57, 58]. This 
versatility extends the utility of 44Sc-labelled radiopharmaceuticals 
across a wide range of diagnostic applications. For instance, 
44Sc-labelled DOTATOC (a DOTA-conjugated peptide) has shown 
high radiochemical purity and stability, which are crucial for the 
accurate imaging of neuroendocrine tumours [57, 59]. In addition, 
44Sc-PSMA-617 has demonstrated its effectiveness in targeting 
a prostate-specific membrane antigen in prostate cancer, offering 
high-contrast PET images that are essential for early and precise 
disease detection [60, 61]. The evaluation of 44Sc-labelled Affibody 
molecules for imaging HER2-expressing tumours has shown 
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The combination of these technologies could transform PET 
imaging into a more affordable and accessible diagnostic tool. The 
portability of the J-PET system supports its deployment in mobile 
units, such as specialised vehicles (Fig. 5.), further extending its 
reach to remote regions. This increased accessibility could lead to 
earlier disease detection, improved treatment planning and better 
healthcare outcomes globally.

CONCLUSIONS
Our vision of the combined use of the low-cost modular J-PET 
scanner and the 44Ti/44Sc generator articulates a forward-looking 
solution to global healthcare challenges. This innovative approach 
not only envisions reduced costs and logistical complexities but also 
broadens the potential accessibility of high-quality PET imaging, 
particularly in underserved regions. By facilitating earlier disease 
detection and improving treatment planning, this technology holds 
the promise to significantly enhance healthcare outcomes worldwide.
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more accessible in diverse settings, including underserved and 
remote areas. 

The development of the 44Ti/44Sc generator [53, 63] enhances this 
vision by enabling the onsite/regional production of 44Sc-labelled 
radiopharmaceuticals [64]. The long half-life of 44Ti [54] ensures 
a stable, long-term source of 44Sc, reducing the dependency on 
cyclotrons and isotope logistics. This capability could streamline 
operations, lower operational costs, and simplify and lower the 
costs of the imaging facilities, particularly benefiting regions with-
out advanced infrastructure.

Fig. 5. �Visualisation of a potential modular J-PET mobile unit (PEToBUS), demonstrating 
the integration of advanced imaging technology into a versatile, transportable 
platform for medical diagnostics. This illustration presents a simplified concept. 
A practical realisation would require a more detailed design addressing 
logistical, technical and contextual requirements.
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