Identification and reocnstruction of ortho-positronium decays in J-PET

$3^{\text {rd }}$ Symposium on Positron Emission Tomography
September $11^{\text {th }} 2018$

Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University

Smart Growth

Why do we need o-Ps $\rightarrow 3 \gamma$ decays in J-PET?

Medical imaging with
spatially-resolved
Positron Annihilation
Lifetime Spectroscopy

Tests of fundamental discrete symmetries with angular correlation operators in the $0-\mathrm{Ps} \rightarrow 3 \mathrm{Y}$ decays

Motivation I: Medical imaging

Spatially-resolved Positron Annihilation Lifetime Spectroscopy

- Determination of:
- mean o-Ps lifetime
- o-Ps / p-Ps production ratio
separately in each voxel of the examined object
- Principle well validated with J-PET MC simulations

(Patent no.
PCT/PL2015/050038)
(P. Moskal,
D. Kisielewska et al.,
arXiv: 1805.11696)

Motivation II: Discrete symmetry tests

- Measurement of expectation values of angular corelation operators odd under a given discrete symmetry transformation

See the talk by M. Silarski Session 7, Wednesday 12:30

operator	C	P	T	CP	CPT
$\vec{S} \cdot \overrightarrow{k_{1}}$	+	-	+	-	-
$\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)$	+	+	-	+	-
$\left(\vec{S} \cdot \overrightarrow{k_{1}}\right)\left(\vec{S} \cdot\left(\overrightarrow{k_{1}} \times \overrightarrow{k_{2}}\right)\right)$	+	-	-	-	+

- Knowledge of the spin of ortho-positronium is required
- An alternative to using external magnetic field:

Estimating the original positron spin event-by-event

(A. Gajos et al., NIM A 819 (2016), 54-59)

Reconstruction of o-Ps $\rightarrow 3 \gamma$ decays in J-PET

1. Find the decay plane containing the 3 hits in the J-PET barrel

2. For each of the recorded γ hits, define a circle of possible origin points of the incident γ assuming o-Ps decay at time t
3. The decay point $\left(x^{\prime}, y^{\prime}\right)$ in the decay plane and time \dagger is an intersection of 3 such circles:

$$
\left(T_{i}-t\right)^{2} c^{2}=\left(X_{i}^{\prime}-x^{\prime}\right)^{2}+\left(Y_{i}^{\prime}-y^{\prime}\right)^{2}, \quad i=1,2,3
$$

Reconstructing o-Ps $\rightarrow 3 y$ in the J-PET data

- For studies of o-Ps decays without reconstruction of the decay position, see the talk by K. Dulski, Session 10, Thursday at 12:25
- Two measurements were done with extensive-size annihilation chambers inside J-PET (details presented by Marek Gorgol on Monday)

Run 3 chamber, $\mathrm{R} \approx 7 \mathrm{~cm}$
No o-Ps production medium
2 days of measurement

Run 6 chamber, $R \approx 12 \mathrm{~cm}$
Walls coated with a porous polymer 180 days of measurement

Data analysis flow for o-Ps $\rightarrow 3$ Y identification

- Assembling of PMT signals and photon hits in the scintillator strips using the standard J-PET procedures
- Details presented by K. Kacprzak in the same session
- Identification of candidates for:
- annihilation photons
- prompt photons
based on the Time-Over-Threshold (TOT) values
- Requirement of 3 annihilation photon candidates in a 2.5 ns event

- Rejection of multiple subsequent γ scatterings in the detector
\square
- Study of the angular topology of the events
- Trilateration-based reconstruction of o-Ps $\rightarrow 3 \gamma$ decay point and time

Time Over Threshold (TOT) distributions

TOT for all recorded γ hits

TOT for γ hits recorded in events with at least 3 hits within 20 ns

PMT B	Y
TOT(B)	PMT A

Using TOT to identify prompt and annihilation γ

- Normalized TOT spectrum including a simple correction for uneven charge response of particluar detection modules
$\mathrm{o}-\mathrm{Ps} \rightarrow 3 \mathrm{y}$ annihilation $(\mathrm{E}<511 \mathrm{keV})$
${ }^{22} \mathrm{Ne}^{\star}$ de-excitation $(\mathrm{E}=1274 \mathrm{keV})$
- Counting candidates in a 2.5 ns time window

Rejection of subsequent scatterings in the detector

- See talks by J. Raj and N. Krawczyk in Session 6 for the cases when we do not want to reject these scatterings
- For each pair of annihilation photon candidates i and $j(i, j=1,2,3)$ the following figure is computed:

$$
\delta t_{i j}=\left|t_{i}-t_{j}\right|-\frac{1}{c}\left|\vec{r}_{i}-\vec{r}_{j}\right|
$$

Distribution of the minimum $\delta \dagger_{i j}$ over all photon pair choices in an events:

Angular topology of three-photon events

For details on the $2 y$ event properties, see the talk by M. Mohammed, Session 8, Wed 15:50

Reconstructed o-Ps $\rightarrow 3 \gamma$ decay points

Results obtained with the trilaterative decay point reconstruction Using about 3 \% of the collected Run 6 data

Longitudinal view

Transverse view

Summary

- Identification and reconstruction of o-Ps $\rightarrow 3 \gamma$ decays in J-PET allow for
- Medical imaging with positronium lifetime and o-Ps / p-Ps ratio
- Polarization control in studies of discrete symmetries
- Two measurements were conducted with extensive-size annihilation chambers
- A preliminary set of o-Ps decay event selection criteria has been devised, based on time over threshold of the recorded photon ineractions as well as angular event topology
- A method for reconstruction of 3γ decays based on trilateration has been devised for J-PET, allowing to reconstruct the point and time of the orthopositronium annihilations

Thank you for your attention!

Backup Slides

O-Ps creation and decay

[1] P. Kubica and A. T. Stewart, Phys. Rev. Lett. 34 (1975) 852 [2] M. Harpen Med.Phys. 31 (2004) 57-61
[3] J Cal-Gonzalez et al, Phys. Med. Biol. 58 (2013) 5127-5152
oPs creation time

Distinguishing o-Ps $\rightarrow 3 \gamma$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \gamma$

Figure 9. (Left) Simulated distributions of differences between detectors ID ($\Delta \mathrm{ID}$) and differences of hittimes ($\Delta \mathrm{t}$) for events with three hits registered from the annihilation $\mathrm{e}+\mathrm{e}-\rightarrow 2 \gamma$ (gold colours) and o-Ps $\rightarrow 3 \gamma$ (green colours). (Middle) Disribution of relative angles between reconstructed directions of gamma quanta. The numbering of quanta was assinged such that $\theta_{12}<\theta_{23}<\theta_{31}$. Shown distributions were obtained requiring three hits each with energy deposition larger than $E t h=50 \mathrm{keV}$. Gold colour scale shows results for simulations of $\mathrm{e}+\mathrm{e}-\rightarrow 2 \gamma$ and green scale corresponds to $\mathrm{o}-\mathrm{Ps} \rightarrow 3 \gamma$. Typical topology of o-Ps $\rightarrow 3 \gamma$ and two kinds of background events is indicated. (Right) Detection efficiency of the J-PET detector for registration of one, two and three gamma quanta from o-Ps $\rightarrow 3 \gamma$ decay. The efficiency is shown as a function of threshold energy applied in the analysis to each gamma quantum.
(J-PET: P.Kowalski, P.Moskal, in preparation)

Ortho-positronium decay tomography

Motivation:

- Ortho-positronium (o-Ps) lifetime in tissue strongly depends on inter-cellular spaces' size
- Morphological imaging possible through determination of o-Ps lifetime
- 4-th photon coming from $\beta+$ emitter deexcitation

(P.M. et al., Patent Application: PCT/EP2014/068374; WO2015028604) is used to estimate o-Ps creation time
- o-Ps $\rightarrow 3 \gamma$ decay location and time must be reconstructed using 3 recorded photons

Properties of the process:

- Momenta of the 3 photons from o-Ps decay lie in one plane (in the o-Ps ref. frame)
- 4-th (deexcitaion) photon momentum is not correlated with the other three
- o-Ps $\rightarrow 3 \gamma$ decay and deexcitation photon emission differ by distance and time related to free e+ path and positronium life

Origin of the reconstruction method

- The reconstruction method applied to o-Ps decays in J-PET was originally created for kaon decays at the KLOE detector (A. Gajos Dipl.Thesis (2013) Jagiellonian University) (Acta Phys. Pol. B 46 (2015) 13)
- Mathematical principle of the reconstruction is similar to GPS positioning

	GPS	$\mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0} \boldsymbol{\rightarrow} \mathbf{6 \gamma}$ at KLOE	o-Ps $\rightarrow 3 \gamma$ at J-PET
Shere centers	Satellite locations	γ hits in KLOE calorimeter	γ hits in J-PET barrel
Whose travel time is measured?	Radio signals from satellites	Photons from π^{0} decays	Photons from o-Ps decay
Reconstructing position of	GPS receiver	$\mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0} \rightarrow 6 \gamma$ decay	o-Ps $\rightarrow 3 \gamma$ decay
Reconstructed time	Current GPS time	Time of K_{L} decay	Time of positronium decay
Using information on	At least 4 satellites	4-6 recorded photons	3 recorded photons and coplanarity

MC simulation of o-Ps decays in J-PET

- Monte Carlo simulations of o-Ps decays recorded by the J-PET detector were prepared
- J-PET detector with 384 scintillator strips was assumed in simulations
- Single strip size: $7 \times 19 \times 500 \mathrm{~mm}^{3}$
- Barrel dimensions:

$$
R=43 \mathrm{~cm}, L=50 \mathrm{~cm}
$$

- Resolution in XY plane: $\Delta \varphi \approx 0.5 \mathrm{deg}$

- Simulation includes:
- $\beta+$ emitter deexcitation and prompt gamma emission
- Positron thermalization before positronium creation (in water)
- Ortho-positronium lifetime (for water)
- Momentum of the decaying positronium - deviation from 3 photons' coplanarity in LAB frame

Effects included in the simulation

Non-coplanarity of photons' momenta

Positron thermalization

 and oPs flight before decayresult in a difference between the o-Ps decay point and the deexcitation photon emission point

o-Ps decay point distribution for a point β^{+}source placed at $(0,0)$ (courtesy of D. Kamińska)

Both effects are negligible within reconstruction resolution (presented on next slides).

Resolution dependence on y hit time resolution

The resolution of o-Ps decay obtained with the presented reconstruction method depends predominantly on the timing resolution of γ hits in scintillator strips.

Ortho-positronium life time resolution

For each event of o-Ps decay, the positronium decay time can be estimated as:

$$
\tau_{o-P s}^{r e c}=t_{0}-\left(t_{\gamma \text { deexc. }}-\frac{L_{\gamma \text { deexc. }}}{c}\right)
$$

where t_{0} is the o-Ps decay time reconstucted with the presented method and $L_{\gamma \text { deexc. }}$ is calculated using reconstructed o-Ps decay point.

