Positronium Lifetime Measurements using 82Rb in a Long-Axial FOV PET/CT Scanner

W. M. Steinberger1, H. Sari3, L. Mercoli2, S. Parzych1, S. Niedźwiecki1, G. Łapkiewicz1, P. Moskal4, E. Stępień4, A. Rominger2, K. Shi2, M. Conti1

1 Siemens Medical Solutions USA, Inc., Department of Physics, Knoxville, Tennessee, United States of America
2 Inselspital, Bern University Hospital, University of Bern, Department of Nuclear Medicine, Bern, Switzerland
3 Siemens Medical Solutions USA, Inc., Siemens Healthcare AG, Bern, Switzerland
4 Jagiellonian University, Center for Theranostics, Institute of Physics, Krakow, Poland

Abstract

This work details results from two positronium (Ps) lifetime measurements performed in a long-axial FOV PET/CT scanner using 82Rb. Ps lifetime measurements are of interest for PET because they can yield additional diagnostic information. The first measurement placed drops of a 82Rb solution in between aluminum disks, quartz disks, and into a gelatin mixture. The extracted ortho-Ps (o-Ps) lifetime for the quartz sample was measured to be 1.53+/-0.04 ns, which agrees well with the previously published value of 1.56+/-0.08 ns. The lifetime of the aluminum is also compared with previous results, however, the lifetime exhibits a longer o-Ps lifetime due to positrons leaking into the surrounding plastic holder. The second measurement performed assessed the uniformity of the extracted lifetimes across a uniform cylinder (20φ×30 cm3) filled with water and an activity of approximately 73.3 MBq. The resulting histo-image was sliced into 1.25 cm thick cross sections, which resulted in lifetime distributions containing on average 1.98×10^5+/-1.06×10^4 counts. These lifetime distributions were integral normalized and compared to an averaged lifetime across the uniform cylinder. Overall average deviation in the lifetime measured across the cylinder was determined to be -0.015+/-1.53 %.

Acknowledgment

We would like to thank and acknowledge the National Science Centre of Poland through grants no. 2021/42/A/ST2/00423 and 2021/43/B/ST2/02150, as well as the SciMat and qLife Priority Research Area budget under the program Excellence Initiative - Research University at Jagiellonian University.

Special thanks to Lorenzo Mercoli, Axel Rominger and Kuangyu Shi for their support in making these measurements at the Bern University Hospital a possibility.

References

Communications Physics. DOI: https://doi.org/10.1038/s42005-020-00440-z (2020).