

Probing Mirror Matter via Ortho-Positronium Decays with J-PET detector

Justyna Mędrala-Sowa ^{1, 2}, Elena Perez del Rio ^{1, 2}, Paweł Moskal ^{1, 2} on behalf of the J-PET Collaboration

¹Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland, ²Centre for Theranostics, Jagiellonian University, 31-501 Kraków, Poland

Objectives

Positronium (Ps), an atom made of an electron and a positron, is a sensitive system for testing Quantum Electrodynamics (QED) and searching for physics beyond the Standard Model, including dark matter candidates like mirror matter. Some theories predict that ortho-positronium (o-Ps) can oscillate into invisible mirror states, altering its lifetime. We investigate this with the Jagiellonian Positron Emission Tomograph (J-PET) [1], a high-resolution detector based on plastic scintillators and SiPM readout [2, 3, 4].

Experiments are performed in vacuum with XAD4 porous polymer [5] to boost positronium formation. Using Monte Carlo simulations, advanced event reconstruction, and background suppression, we isolate three-photon o-Ps decays and measure lifetimes with high precision. Our aim is to reach 10^{-6} sensitivity, enabling stringent QED tests and indirect searches for mirror matter, thereby constraining hidden-sector models and informing dark matter research.

Mirror matter

- predicted to exist parallel to the familiar matter we observe,
- interacts very weakly with ordinary matter,
- consists of particles, which are reflections of the observed particles,
- an excellent candidate for Dark matter

Mirror matter in o-Ps

 $\mathcal{L} = \varepsilon F_{\mu\nu} F'^{\mu\nu} \qquad \qquad \varepsilon < 5 \cdot 10^{-8} [7]$

 γ' escapes detection \rightarrow observed o-Ps lifetime deviates from prediction [6]

 $\Gamma_{\text{theory}} = 7.039979(1) \times 10^6 [8]$ $\Gamma_{\text{experimental}} = 7.0401 \pm 0.0007 \times 10^6 [9]$

Positronium

State bound through electromagnetic interactions that consists of an electron and a positron.

It exists in two forms: a triplet state (o-Ps) and a singlet state (p-Ps). The triplet state (o-Ps) primarily decays into three photons.

o-Ps in J-PET

Main background sources

- random coincident events,
- cosmic rays and particles (less than 1%[10]),
- scattered photons,
- pick-off- events where positron from a positronium annihilate with different electron from detector volume.

Data selection

number of the hits ≥ 4 : $o - Ps \rightarrow 3\gamma + \gamma_{promp}$

Region 1:≥3 annihilation hitsRegion 2:1 prompt hit

3 sum of two smallest angles $\geq 190^{\circ}$

- 4 time difference between annihilation hits < 3 ns
- Source distance from 3-hit plane < 8 cm

Event categories in MC

Summary

- The research aims to explore **mirror matter**, a potential dark matter candidate.
- Positronium, due to its unique properties, provides a sensitive probe for testing physics beyond the Standard Model.
- The overarching goal is to precisely determine the **positronium lifetime** using the **J-PET detector**, optimized for studying annihilation processes.
- The studies focus on careful data selection and detailed Monte Carlo (MC) simulations within the Modular prototype, aiming to accurately model experimental conditions. These high-quality MC datasets are then prepared for machine learning applications [11], enabling advanced pattern recognition, background suppression, and improved event reconstruction.

References

- 1] P. Moskal et al. *Sci. Adv.*, 7:eabh4394, 2021.
- [2] F. Tayefi et al. $Bio\text{-}Algorithms\ Med\text{-}Syst.,\ 19:133-139,\ 2023.$
- [3] P. Moskal et al. *Sci. Adv.*, 10:adp2840, 2024.
- [4] P. Moskal and E. Stępień. *PET Clinics*, 15(4):439–452, 2020.
- [5] B. Jasińska et al. Acta Phys. Pol. A, 47(2):453, 2016.
 [6] R Foot and S.N Gninenko. Phys. Lett. B, 480:171–175, 04 2000.
- [7] C. Vigo et al. *Physical Review Letters*, 124(10):101803, 2020.
- [8] G. S. Adkins et al. *Annals of Physics*, 295:136, 2002.
- [9] Y. Kataoka et al. *Phys. Lett. B*, 671:219, 2009.
 [10] J. Raj. Phd thesis, UJ, Faculty of Physics, Astronomy and Applied Computer Science, Kraków, Poland, 2022.
- [11] E. Pérez del Río et al. *Acta Phys. Pol. A*, 142(3):386–390, 2022.

Acknowledgements

We acknowledge support from the National Science Centre of Poland through Grants No. 2019/35/B/ST2/03562, 2020/38/E/ST2/00112 and the SciMat and qLife Priority Research Area budget under the auspices of the program Excellence Initiative-Research University at Jagiellonian University.