

First observation of the positronium atoms with the J-PET detector

K. Dulski¹, on behalf of the J-PET collaboration

¹M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Cracow Email: kamil.dulski@doctoral.uj.edu.pl

Jagiellonian Positron Emission Tomograph (J-PET) is a first PET device built from plastic scintillators [1-4]. As a detector optimised for the registration of photons from the positron-electron annihilation it is also used for the studies of decays of positronium atoms [5-7]. In this poster we present: (i) results of the commissioning of the J-PET detector, (ii) methods of the data selection and analysis, and (iii) first lifetime spectra of positronium (produced in the porous polymer [8]) measured with the J-PET detector.

TOT as a measure of energy loss

J-PET detector

Picture of the J-PET detector. ²²Na source 🛑 in Kapton foil was placed inside the center of the detector. Source was surrounded with porous polymer XAD4[8] () in vacuum.

 ${}^{22}Na \rightarrow {}^{22}Ne^* + e^+ + \nu_e$ ${}^{22}Ne^* \rightarrow {}^{22}Ne + \gamma_{1274 \, keV}$

widths of signal at all 4 thresholds

Annihilation types distinction

Positronium Lifetime Distribution –

Annihilation into 2 gamma quanta

	Lifetime for 1 Component [ns] Intensity for 1 Component in percent	PAv 9] 2.88 (25) 4.52 (31)	[8] 2.45 (25) 3.3 (0.6)
	Lifetime for 2 Component [ns] Intensity for 2 Component in percent	10.90 (93) 2.53 (36)	10.2 (0.6) 2.8 (0.5)
	Lifetime for 3 Component [ns] Intensity for 3 Component in percent	90.9 (2.4) 18.29 (53)	90.8 (1.2) 40.4 (0.4)
	<u>Lifetime for p-PS Component - fixed</u> Intensity for p-PS Component in percen ⁻	<u>0.125</u> t 20.1 (2.1)	
alle k. k. l	Sigma for 1 Gauss [ns]	0.275 (19)	

Summary

The Jagiellonian Positron Emission Tomograph (J-PET) is optimized for the detection of photons from the electron-positron annihilation with high time and angular resolutions. Selection procedure for analysis of J-PET data provides the opportunity to study different types of decay of positronium, creating a possibility to conduct research in the fundamental physics field as well as in the material sciences.

Acknowledgment

We acknowledge suport by the the Foundation for Polish Science through the MPD and TEAM/2017-4/39 programmes, the National Science Centre through the grant No. 2016/21/B/ST2/01222, 2017/25/N/NZ1/00861, the Ministry for Science and Higher Education through grants no. 6673/IA/SP/2016, 7150/E-338/SPUB/2017/1, 7150/E-338/M/2017 and 7150/E-338/M/2018

Bibliography

[1] P. Moskal et al., Nucl. Instr. and Meth. **A764** 317, (2014) [2] P. Moskal et al., Nucl. Instr. and Meth. A775 54, (2015) [3] P. Moskal et al., Phys. Med. Biol. **61** 2025, (2016)

[4] Sz. Niedzwiecki et al., Acta Phys. Polon. **B48** 1567, (2017) [5] P. Moskal et al., Acta Phys. Polon. **B47** 509, (2016) [6] A. Gajos et al., Nucl. Instr. and Meth. **A819** 54, (2016)

[7] D. Kaminska et al. Eur. Phys. J C 76, (2016) [8] B. Jasinska et al., Acta Phys. Polon. B47 453, (2016) [9] K. Dulski et al., Hyperfine Interactions, (2018)