First Several Slides are a Summary

ATRAP Progress and Aspirations

G. Gabrielse,^{1, *} R. Kalra,¹ W.S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ D. Grzonka,² W. Oelert,² T. Sefzick,² M. Zielinski,² D.W. Fitzakerley,³ M.C. George,³ E.A. Hessels,³ C.H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴ (ATRAP Collaboration)

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany

Support: USA: NSF and AFOSR. Canada: NSERC, CRC and CFI Germany: BMBF, DFG and DAAD

Gerald Gabrielse

Leverett Professor of Physics, Harvard University ATRAP Spokesperson

Proposal to Trap Cold Antihydrogen – 1986

• Produce cold antihydrogen from cold antiprotons

"When antihydrogen is formed in an ion trap, the neutral atoms will no longer be confined and will thus quickly strike the trap electrodes. Resulting annihilations of the positron and antiproton could be monitored. ..."

• Trap cold antihydrogen

• Use accurate laser spectroscopy to compare antihydrogen and hydrogen

"For me, the most attractive way ... would be to capture the antihydrogen in a neutral particle trap ... The objective would be to then study the properties of a small number of [antihydrogen] atoms confined in the neutral trap for a long time."

Gerald Gabrielse, 1986 Erice Lecture (shortly after first pbar trapping) In **Fundamental Symmetries**, (P.Bloch, P. Paulopoulos, and

R. Klapisch, Eds.) p. 59, Plenum, New York (1987).

Use trapped antihydrogen to measure antimatter gravity G. Gabrielse, Hyperfine Interact. 44, 349 (1988)

High Precision Tests of CPT Invariance

The Most Precise CPT Test with Baryons \rightarrow by TRAP at CERN

(most precise result of CERN's antiproton program)

Goal at the AD: Make CPT test that approach exceed this precision

ATRAP Centrifugal Separation of Antiprotons and Electrons

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ J. Wrubel,^{1,†} R. Kalra,¹ E. Novitski,¹ D. Grzonka,² W. Oelert,² T. Sefzick,³ M. Zielinski,² J. S. Borbely,³ D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ J. Walz,⁴ and A. Speck⁵

- Important for arranging efficient overlap of antiprotons and a positron plasma
- Important for understanding the heating of antiprotons when electrons are ejected

million antiprotons,
 million electrons

ATRAP

Adiabatic Cooling of Antiprotons

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ R. Kalra,¹ E. Novitski,¹ D. Grzonka,²
W. Oelert,¹ T. Sefzick,² M. Zielinski,² D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴

(ATRAP Collaboration)

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany (Received 1 December 2010; published 15 February 2011)

Embedded electron cooling (to 31 K or 17 K)

Followed by adiabatic cooling (to 3.5 K or below)

ATRAP

Trapped Antihydrogen in Its Ground State

G. Gabrielse,^{1,*} R. Kalra,¹ W.S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ D. Grzonka,² W. Oelert,² T. Sefzick,² M. Zielinski,² D.W. Fitzakerley,³ M.C. George,³ E.A. Hessels,³ C.H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴ (ATRAP Collaboration)

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

³York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany

Antihydrogen atoms (\overline{H}) are confined in an Ioffe trap for 15 to 1000 seconds – long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (\overline{p}) and positrons (e^+) interact, 5 ± 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped \overline{H} are critical if laser-cooling of trapped \overline{H} is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

5 +/- 1 ground state atoms simultaneously trapped

Still to be optimized

Crude Antigravity Limit

Gravity force on hydrogen:MgATRAP 2011Gravity force on antihydrogen: κMg

To have a trap: $|\kappa| \leq W/(Mgh) = 3 \times 10^3$

Since many antihydrogen atoms leave quickly: (as trap goes from 375 mK to 350 mK)

$$|\kappa| < 2 \times 10^2$$

Our earlier gravitational redshift limit is much more stringent

Antiproton and proton clocks run at the same rate, $< 10^{-10}$

$$|\kappa - 1| < 1 \times 10^{-6}$$

Experiment

G. Gabrielse, A. Khabbaz, D. S. Hall, C. Heimann, H. Kalinowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198 (1999).

Theory

R. J. Hughes and M. H. Holzscheiter, Phys. Rev. Lett. 66, 854 (1991).

Direct Measurement of the Proton Magnetic Moment

J. DiSciacca¹ and G. Gabrielse^{1,*}

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 (Dated: January 14, 2012)

The proton magnetic moment in nuclear magnetons is measured to be $\mu_p/\mu_N \equiv g/2 = 2.792\,846 \pm 0.000\,007$, a 2.5 ppm (parts per million) uncertainty. The direct determination, using a single proton in a Penning trap, demonstrates the first method that should work as well with an antiproton (\bar{p}) as with a proton (p). This opens the way to measuring the \bar{p} magnetic moment (whose uncertainty has essentially not been reduced for 20 years) at least 10^3 times more precisely.

Could Now Realize a Thousand-fold Improved Measurement of the Antiproton Moment

Expect to eventually be more precise than all proton measurements

Second Generation Ioffe Trap

Fully assembled, vacuum tested cold

Wiring finished this week

Cold testing at high current \rightarrow soon

Intend to use from the beginning of the 2012 run

second generation Ioffe trap

ports for laser and microwaves

Slides Used for Talk

ATRAP Progress and Aspirations

G. Gabrielse,^{1, *} R. Kalra,¹ W.S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ D. Grzonka,² W. Oelert,² T. Sefzick,² M. Zielinski,² D.W. Fitzakerley,³ M.C. George,³ E.A. Hessels,³ C.H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴ (ATRAP Collaboration)

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany

> Support: USA: NSF and AFOSR. Canada: NSERC, CRC and CFI Germany: BMBF, DFG and DAAD

Gerald Gabrielse

Leverett Professor of Physics, Harvard University ATRAP Spokesperson

Cold Antiprotons and Antihydrogen

High Precision Tests of CPT Invariance

The Most Precise CPT Test with Baryons \rightarrow by TRAP at CERN

(most precise result of CERN's antiproton program)

Goal at the AD: Make CPT test that approach exceed this precision

Gabrielse **TRAP Improved the Comparison of Antiproton** q/m (antiproton) and Proton by ~10⁶ = -0.999999999991(9)q/m (proton) $9 \times 10^{-11} = 90 \text{ ppt}$ most stringent CPT test with baryons **10**⁻¹ Bevatron (p discovery) (a) (b) **10**⁻² **10**-3 CERN 2 fractional accuracy (exotic 10-4 BNL atoms) Trap II **10**-5 ddd **10**-6 1 10-7 6×10^{5} TRAP I 10-8 **10**-9 TRAP II TRAP III 0 **10**⁻¹⁰ TRAP/III 1960 1970 1980 2000 1990 year В B В 100 (P) antiprotons (P) \mathbf{p} H and protons

G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe; Phys. Rev. Lett. **82**, 3198 (1999).

Embarrassing, Unsolved Mystery: How did our Matter Universe Survive Cooling After the Big Bang?

Big bang → equal amounts of matter and antimatter created during hot time

As universe cools → antimatter and matter annihilate

Big Questions:

- How did any matter survive?
- How is it that we exist?

Our experiments are looking for evidence of any way that antiparticles and particles may differ

Our "Explanations" are Not so Satisfactory

Baryon-Antibaryon Asymmetry in Universe is Not Understood

Standard "Explanation"

- CP violation
- Violation of baryon number
- Thermodynamic non-equilibrium

Alternate

- CPT violation
- Violation of baryon number
- Thermo. equilib. Bertolami, Colladay, Kostelecky, Potting Phys. Lett. B 395, 178 (1997)

Why did a universe made of matter survive the big bang? Makes sense look for answers to such fundamental questions in the few places that we can hope to do so very precisely.

Bigger problem: don't understand dark energy within 120 orders of magnitude

Why Compare H and H (or P and P)?

Reality is Invariant – symmetry transformations

- parity charge conjugation, parity
- CPT charge conjugation, parity, and time reversal

CPT Symmetry

\rightarrow Particles and antiparticles have

- same mass
- opposite charge
 same mean life
- \rightarrow Atom and anti-atom have
 - \rightarrow same structure

Looking for Surprises

- simple systems
- extremely high accuracy
- comparisons will be convincing

- same magnetic moment

- reasonable effort
- FUN

Comparing the CPT Tests

Warning – without CPT violation models it is hard to compare

Seek to Improve Lepton and Baryon CPT Tests

accuracy

$$\frac{R_{\infty}[\overline{\mathrm{H}}]}{R_{\infty}[\mathrm{H}]} = \frac{m[e^+]}{m[e^-]} \left(\frac{q[e^+]}{q[e^-]}\right)^2 \left(\frac{q[\overline{p}]}{q[p]}\right)^2 \frac{1+m[e^-]/M[p]}{1+m[e^+]/M[\overline{p}]}$$

Ultimate Goal: Hydrogen 1s – 2s Spectroscopy

Gabrielse

Many fewer antihydrogen atoms will likely be available

Cold Antiproton Physics is Now Routine Cold Antihydrogen is Routinely Made

Only Accessible Antiprotons are at CERN

France

Switzerland (Geneva)

- Unusual for AMO experiment to be done over an ocean
- Must conform to accelerator schedule
- Environment not very amenable to precise AMO methods
- No AMO funding source for facility upgrades
- Data rate is very slow

Accumulating Low Energy Antiprotons: Basic Ideas and Demonstrations (1986 – 2000)

- Slow antiprotons in matter
- Capture antiprotons in flight
- Electron cooling \rightarrow 4.2 K
- 5 x 10⁻¹⁷ Torr

Now used by 3 collaborations at the CERN AD ATRAP, ALPHA and ASACUSA

Supported by AFOSR

Antiproton Capture – the Movie

"First Capture of Antiprotons in a Penning Trap: A KeV Source",

G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R. Tjoelker, T.A. Trainor, H. Kalinowsky, J. Haas, and W. Kells; Phys. Rev. Lett. 57, 2504 (1986).

Electron-Cooling of Antiprotons – in a Trap

- Antiprotons cool via collisions with electrons
- Electrons radiate away excess energy

"Cooling and Slowing of Trapped Antiprotons Below 100 meV",

G. Gabrielse, X. Fei, L.A. Orozco, R. Tjoelker, J. Haas, H. Kalinowsky, T.A. Trainor, W. Kells; Phys. Rev. Lett. 63, 1360 (1989).

How?

Proposal to Trap Cold Antihydrogen – 1986

• Produce cold antihydrogen from cold antiprotons

"When antihydrogen is formed in an ion trap, the neutral atoms will no longer be confined and will thus quickly strike the trap electrodes. Resulting annihilations of the positron and antiproton could be monitored. ..."

• Trap cold antihydrogen

• Use accurate laser spectroscopy to compare antihydrogen and hydrogen

"For me, the most attractive way ... would be to capture the antihydrogen in a neutral particle trap ... The objective would be to then study the properties of a small number of [antihydrogen] atoms confined in the neutral trap for a long time."

Gerald Gabrielse, 1986 Erice Lecture (shortly after first pbar trapping) In **Fundamental Symmetries**, (P.Bloch, P. Paulopoulos, and

R. Klapisch, Eds.) p. 59, Plenum, New York (1987).

Use trapped antihydrogen to measure antimatter gravity G. Gabrielse, Hyperfine Interact. 44, 349 (1988)

Two Methods Produce Slow Antihydrogen

In a nested Penning trap, during positron cooling of antiprotons
 Device and technique – ATRAP
 Used to produce slow antihydrogen – ATHENA and ATRAP

Variations: Basic (ATRAP initially, ATHENA-ALPHA) Driven (ATRAP before 2007) Adiabatic well depth change (ATRAP 2007)

2. Laser-controlled resonant charge exchange ATRAP

Anti-H Method 1: Nested Penning Trap 3-Body "Recombination"

PHYSICS LETTERS A

Volume 129, number 1

ANTIHYDROGEN PRODUCTION USING TRAPPED PLASMAS

G. GABRIELSE, S.L. ROLSTON, L. HAARSMA

The second of the second second

e ve diamana, mili se meste a desa de

Department of Physics, Harvard University, Cambridge, MA 02138, USA

and

W. KELLS

Fermi National Accelerator Laboratory, Batavia, IL 60438, USA

Fig. 1. Electrodes (a) and axial potential (b) for a nested pair of Penning traps. Nested Penning Trap

We call attention to another three-body recombination

2 May 1988

(6)

 $p^{-} + e^{+} + e^{+} \rightarrow \bar{H} + e^{+}$,

which may well be more efficient for antihydrogen production by many orders of magnitude. Its cross

3-Body "Recombination"

Positron Cooling of Antiprotons in a Nested Penning Trap

TRAP/ATRAP Develops the Nested Penning Trap

Proposed nested trap as a way to make antihydrogen "Antihydrogen Production Using Trapped Plasmas" G. Gabrielse, L. Haarsma, S. Rolston and W. Kells Physics Letters A 129, 38 (1988)

"Electron-Cooling of Protons in a Nested Penning Trap" D.S. Hall, G. Gabrielse Phys. Rev. Lett. 77, 1962 (1996)

"First Positron Cooling of Antiprotons" ATRAP Phys. Lett. B 507, 1 (2001) Gabrielse

Anti-H Method II: Antihydrogen Via Laser-Controlled Resonant Charge Exchange

ATRAP, Phys. Rev. Lett. 93, 263401 (2004)
What is Happening Now

Variations of Magnetic Traps

- Deeper antihydrogen well within trap electrodes (in principle)
- Tighter confinement of antihydrogen
- Easier radial access for cooling and spectroscopy lasers
- Less magnetic gradient gives longer charged particle storage
- Less magnetic gradient gives make it easier to produce antihydrogen

ATRAP's Most Recent Antihydrogen Trap

ATRAP II Trap Apparatus

Slow antihydrogen

Gerald Gabrielse

quick study

The quest to precisely compare cold antihydrogen and hydrogen atoms should enable physicists to test our understanding of one of reality's fundamental symmetries.

Gerald Gabrielse is the Leverett Professor of Physics at Harvard University in Cambridge, Massachusetts and is the spokesperson for the ATRAP collaboration at CERN in Geneva.

Figure 1. Key components of the ATRAP apparatus that accepts antiprotons from the antiproton decelerator at CERN and slows positrons from a sodium-22 source. The goal of the experiment is to trap and study cold antihydrogen atoms in the specially designed magnetic fields of the loffe trap.

© 2010 American Institute of Physics, S-0031-9228-1003-350-8

2008 First Antihydrogen Production within a Penning-Ioffe Trap

G. Gabrielse,^{1, *} P. Larochelle,¹ D. Le Sage,¹ B. Levitt,¹ W.S. Kolthammer,¹ R. McConnell,¹

P. Richerme,¹ J. Wrubel,¹ A. Speck,² M.C. George,^{3,4} D. Grzonka,³ W. Oelert,³ T. Sefzick,³

Z. Zhang,³ A. Carew,⁴ D. Comeau,⁴ E.A. Hessels,⁴ C.H. Storry,⁴ M. Weel,⁴ and J. Walz⁵

(ATRAP Collaboration)

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 ²Rowland Inst. at Harvard, Harvard University, Cambridge, MA 02142 ³IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ⁴York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada ⁵Institut fur Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

PRL

No antihydrogen trapped yet

- not cold enough
- not in ground state

ATRAP – observed the first production of antihydrogen atoms in the fields of a Ioffe trap (PRL 2008)

Less than **20 atoms** were being trapped per trial

ALPHA – did similar production the following year

ATRAP → More Antiprotons, Much Colder, More Simultaneously Trapped Atoms

- Lowered electrode temperature to 1.2 K
- Started measuring antiproton temperatures
- Developed new pbar cooling methods

First antiprotons cold enough to centrifugally separate from the electrons that cool them

Phys. Rev. Lett. 105, 213002 (2010).

Two new cooling methods for antiprotons

- -- embedded electron cooling
- -- adiabatic cooling Phys. Rev. Lett. **106**, 073002 (2011).

\rightarrow 3 million antiprotons at 3.5 K

Colder Electrodes: $4.2 \text{ K} \rightarrow 1.2 \text{ K}$

10 Million Cold Pbar/Trial at ATRAP

ATRAP Centrifugal Separation of Antiprotons and Electrons

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ J. Wrubel,^{1,†} R. Kalra,¹ E. Novitski,¹ D. Grzonka,² W. Oelert,² T. Sefzick,³ M. Zielinski,² J. S. Borbely,³ D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ J. Walz,⁴ and A. Speck⁵

- Important for arranging efficient overlap of antiprotons and a positron plasma
- Important for understanding the heating of antiprotons when electrons are ejected

million antiprotons,
 million electrons

ATRAP

Adiabatic Cooling of Antiprotons

G. Gabrielse,^{1,*} W. S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ R. Kalra,¹ E. Novitski,¹ D. Grzonka,²
W. Oelert,¹ T. Sefzick,² M. Zielinski,² D. Fitzakerley,³ M. C. George,³ E. A. Hessels,³ C. H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴

(ATRAP Collaboration)

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany (Received 1 December 2010; published 15 February 2011)

Embedded electron cooling (to 31 K or 17 K)

Followed by adiabatic cooling (to 3.5 K or below)

Trapped Antihydrogen in Its Ground State

G. Gabrielse,^{1,*} R. Kalra,¹ W.S. Kolthammer,¹ R. McConnell,¹ P. Richerme,¹ D. Grzonka,² W. Oelert,² T. Sefzick,² M. Zielinski,² D.W. Fitzakerley,³ M.C. George,³ E.A. Hessels,³ C.H. Storry,³ M. Weel,³ A. Müllers,⁴ and J. Walz⁴ (ATRAP Collaboration)

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 ²IKP, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada ⁴Institut für Physik, Johannes Gutenberg Universität and Helmholtz Institut Mainz, D-55099 Mainz, Germany

Antihydrogen atoms (\overline{H}) are confined in an Ioffe trap for 15 to 1000 seconds – long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (\overline{p}) and positrons (e⁺) interact, 5 ± 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped \overline{H} are critical if laser-cooling of trapped \overline{H} is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

Detecting Trapped Antihydrogen

Penning-Ioffe Trap

(b)

1.5

1.0

After 15 to 1000 s, Turn Off the Trap \rightarrow Quench

Detection of Trapped Antihydrogen

784 BICRON BCF-12 scintillating fibers

- 435 nm peak emission
- 2.7 m attenuation length

large plastic scintillator paddles

- 1 m high
- outside picture

Coincidence – no cuts (MHz)

- 54% efficiency for pbar ann.
- 41 Hz cosmic ray background

Time-stamped events (kHz rate)

- radially spilled antiprotons
- cosmic rays
- evaluate 4096 detector combinations

Best signal-to-noise

- 33% detection efficiency
- 1.7 Hz cosmic ray background

Goal for 2011 Was to Obtain a Lot More Simultaneously Trapped Antihydrogen Atoms

 \rightarrow Enough to see trapped antihydrogen every trial

Tried a variety of methods to make the antiprotons and positron interact

- 2 ms coherent drive
- 15 minute noise -broadened drive

Did not see (yet) the clear signal for every trial \rightarrow averaged all trials together

- not what one wants to do on the long term
- see if antihydrogen is being made
- averaged over the different methods \rightarrow 5 +/- 1 trapped

5 +/- 1 trapped antihydrogens per trial

Gabrielse

1.7 Hz background, 33% efficiency

Detector Counts During Quench (1 second)

Signal is during the 1 second quench window (20 trials averaged together)

1 chance in 10⁷ that such a signal comes from the cosmic ray background

All 1 sec. bins before and after the quench bin are statistical

Control trial: quench without particles (to see if flux change makes fake signal)

What Kind of Antihydrogen Atoms Are These?

Most of the antihydrogen atoms in the strong magnetic field → Guiding Center Atoms

strong field seekers not trapped in a magnetic minimum

prestripping field F in V/cm

A few Atoms Are Have Chaotic Dynamics

These are Ground State Antihdyrogen Atoms

Conservative lifetime limit: Circular states decay most slowly

$$(m = l = n-1)$$

Start: n = 50 circular state, lifetime = 30 ms ~ $1/n^5$

Cascade to ground state takes 0.5 s

In with collisions and field the decay must be much faster

Antihydrogen atoms are in trap for 15 to 1000 s)

Gabrielse

Gravity

G. Gabrielse, Hyperfine Interact. 44, 349 (1988)

Crude Antigravity Limit

Gravity force on hydrogen:MgATRAP 2011Gravity force on antihydrogen: κMg

To have a trap: $|\kappa| \leq W/(Mgh) = 3 \times 10^3$

Since many antihydrogen atoms leave quickly: (as trap goes from 375 mK to 350 mK)

$$|\kappa| < 2 \times 10^2$$

Our earlier gravitational redshift limit is much more stringent

Antiproton and proton clocks run at the same rate, $< 10^{-10}$

$$|\kappa - 1| < 1 \times 10^{-6}$$

Experiment

G. Gabrielse, A. Khabbaz, D. S. Hall, C. Heimann, H. Kalinowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198 (1999).

Theory

R. J. Hughes and M. H. Holzscheiter, Phys. Rev. Lett. 66, 854 (1991).

Direct Measurement of the Proton Magnetic Moment

J. DiSciacca¹ and G. Gabrielse^{1,*}

¹Dept. of Physics, Harvard University, Cambridge, MA 02138 (Dated: January 14, 2012)

The proton magnetic moment in nuclear magnetons is measured to be $\mu_p/\mu_N \equiv g/2 = 2.792\,846 \pm 0.000\,007$, a 2.5 ppm (parts per million) uncertainty. The direct determination, using a single proton in a Penning trap, demonstrates the first method that should work as well with an antiproton (\bar{p}) as with a proton (p). This opens the way to measuring the \bar{p} magnetic moment (whose uncertainty has essentially not been reduced for 20 years) at least 10^3 times more precisely.

Earlier contributions

- [12] N. Guise, J. DiSciacca, and G. Gabrielse, Phys. Rev. Lett. 104, 143001 (2010).
- [14] S. Ulmer, C. C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, and J. Walz, Phys. Rev. Lett. 106, 253001 (2011).

Why Measure the Antiproton Magnetic Moment

CPT test – compare with proton moment

Proton Magnetic Moment Measurements

(method cannot be applied to antiprotons)

Insiration: Electron (Positron) Magnetic Moment Measurements to 3 x 10⁻¹³

electron magnetic moment in Bohr magnetons

Can do as well with positron as with electron to compare

Can We Do A Similar Measurement with Antiprotons?

Harder: nuclear magneton rather than Bohr magneton $\mu_N/\mu_B = m_e/m_p \sim 1/2000$

One-Particle Method

With one proton or antiproton suspended in a trap, measure spin and cyclotron frequencies

$$\frac{\mu_p}{\mu_N} \equiv \frac{g_p}{2} = \frac{f_s}{f_c}$$

No previous method has been devised to measure antiproton and proton moments in the same way

Huge Magnetic Bottle Gradient

190 times larger than used for electron

Spin-Flips Increase Allan Deviation

Direct Measurement of the Proton Mag. Moment

$$\frac{\mu_p}{\mu_N} = \frac{g}{2} = 2.792\,846 \pm 0.000\,007 \qquad [2.5 \text{ ppm}]$$

Harvard:	g/2 =	5.585 6	692	+/-	0.000 007		2 506.4	ppb
CODATA:	g/2 =	5.585 6	694 713	+/-	0.000 000	023	8.24	ppb

Could Now Realize a Thousand-fold Improved Measurement of the Antiproton Moment

Expect to eventually be more precise than all proton measurements
Method II: Antihydrogen Via Laser-Controlled Resonant Charge Exchange

ATRAP, Phys. Rev. Lett. 93, 263401 (2004) -- demo with a few atoms

200 Times More Antihydrogen Made Per Trial

(compared to proof-of-principle demonstration)

Antiprotons: 5 million Positrons: 300 million

Remains to see if this can be done in a Ioffe field

Progress in 2011

Repeated results of previous year \rightarrow will now publish

Started to use adiabatically-cooled antiprotons

Started to do in presence of the Ioffe trap fields

Plan for 2012

Second Generation Ioffe Trap

Glued together vacuum system

- rapid switch off
- laser ports
- very challenging (company failed)

Fully assembled, vacuum tested cold (many cycles)

Wiring finished this week

Cold testing at high current \rightarrow soon

Intend to use from the beginning of the 2012 run

second generation Ioffe trap

ports for laser and microwaves

Plan for 2012

Use second generation Ioffe trap

- expect some learning curve but testing this spring
- expect more trapped antihydrogen
- expect to turn off the trap repeatedly during a shift
- investigate energy distribution of antihydrogen in trap (preparation for laser cooling)

 tompting to st

tempting to start but ...

Try to trap antihydrogen made by laser-controlled charge exchange

- profit from adiabatic cooling
- profit from second generation Ioffe trap

Parasitic operation to measure antiproton magnetic moment

Summary

- Control of bigger and colder antiproton and positron plasmas
- New cooling methods
- More antihydrogen from laser-controlled charge exchange
- Trapped antihydrogen with
 - \rightarrow prospects for much more in 2012 (new Ioffe trap)
- New antiproton magnetic moment measurement
 - → 1000 fold improved comparison of antiproton and proton magnetic moments "soon"