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Proposal to Trap Cold Antihydrogen — 1986

e Produce cold antihydrogen from cold antiprotons

“When antihydrogen 1s formed in an ion trap, the neutral atoms will no longer be
confined and will thus quickly strike the trap electrodes. Resulting annihilations of
the positron and antiproton could be monitored. ..."

e Trap cold antihydrogen
e Use accurate laser spectroscopy to compare
antihydrogen and hydrogen

“For me, the most attractive way ... would be to capture the antihydrogen in a
neutral particle trap ... The objective would be to then study the properties of a small
number of [antihydrogen] atoms confined in the neutral trap for a long time.”

Gerald Gabrielse, 1986 Erice Lecture (shortly after first pbar trapping)
In Fundamental Symmetries, (P.Bloch, P. Paulopoulos, and
R. Klapisch, Eds.) p. 59, Plenum, New York (1987).

Use trapped antihydrogen

to measure antimatter gravity (. Gabrielse, Hyperfine Interact. 44, 349 (198R%)
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High Precision Tests of CPT Invariance
The Most Precise CPT Test with Baryons = by TRAP at CERN

A B A B ¢ B
&> & CE ™S 2

. Gabrielse, A. Khabbaz, D. 5. Hall, C. Heimann,
H. Kalmowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198
(199497,

g/ m (antiproton)

=—0.99999999991(9) 9x10™" =90ppt
g/ m (proton)

(most precise result of CERN’s antiproton program)

Goal at the AD: Make CPT test that approach
exceed this precision
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PHYSICAL REVIEW LETTERS

week ending
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Centrifugal Separation of Antiprotons and Electrons
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of antiprotons and a positron plasma
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Trapped Antihydrogen in Its Ground State

G. Gabrielse,! * R. Kalra,! W.S. Kolthammer,! R. McConnell,! P. Richerme,! D. Grzonka,> W. Qelert,” T. Sefzick,?
M. Zielinski,? D.W. Fitzakerley,® M.C. George,® E.A. Hessels,> C.H. Storry,® M. Weel ® A. Miillers,* and J. Walz*
(ATRAP Collaboration)

' Dept. of Physics, Harvard University, Cambridge, MA 02138
2IKP, Forschungszentrum Jilich GmbH, 52425 Filich, Germany
*York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada
Institut fiir Physik, Johannes Gutenbery Universitdt and Helmholtz Institut Mainz, D-55099 Mainz, Germany

Antihvdrogen atoms {ﬁ} are confined in an loffe trap for 15 to 1000 seconds — long enough to
ensure that they reach their ground state. Though reproducibility challenges remain in making large
numbers of cold antiprotons (p) and positrons (e”) interact, 5 + 1 simultaneously-confined ground
state atoms are produced and observed on average, substantially more than previously reported.
Increases in the number of simultaneously trapped H are critical if laser-cooling of trapped H is to
be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.
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simultaneously trapped Still to be optimized
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Crude Antigravity Limit

Gravity force on hydrogen: Mg ATRAP 2011
Gravity force on antihydrogen:  sMg

To have a trap: |&| < W/(Mgh) = 3.x 10°

Since many antihydrogen atoms leave quickly: K| < 2 x 102
(as trap goes from 375 mK to 350 mK) | | |

Our earlier gravitational redshift limit 1s much more stringent

Antiproton and proton

K — 1] < 1x 1076
clocks run at the same rate, < 1019 s - - -

Experiment
A B A B
G. Gabrnelse, A. Khabbaz, D. 5. Hall, C. Heumann,
H. Kalmowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198
@IS @EI> a09)
Theory

R. J. Hughes and M. H. Holzscheiter, Phys. Rev. Lett.
66, 854 (1991).
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Direct Measurement of the Proton Magnetic Moment

J. DiSciacca’ and G. Gabrielse!:*

IDept. of Physics, Harvard University, Cambridge, MA 02138

(Dated: January 14, 2012)

The proton magnetic moment in nuclear magnetons is measured to be p, /uy = g/2 = 2.792 846+
0.000007, a 2.5 ppm (parts per million) uncertainty. The direct determination, using a single proton
in a Penning trap, demonstrates the first method thatshould work as well with an antiproton (p)
as with a proton (p). This opens the way to measuring the p magnetic moment (whose uncertainty
has essentially not been reduced for 20 years) at least 10* times more precisely.
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Could Now Realize a Thousand-fold
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Improved Measurement of the Antiproton Moment

precision
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Later

If everything went exactly right it would be possible to do this
with antiprotons in 2012

—> currently under consideration

Expect to eventually be more precise than all proton measurements
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Second Generation Ioffe Trap

Fully assembled, vacuum tested cold
Wiring finished this week
Cold testing at high current = soon

Intend to use from the beginning of the 2012 run

second generation loffe trap

ports for laser and microwaves
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Slides Used for Talk
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Low Energy Particle Physics

AMO Physics, Particle Physics, Plasma Physics
methods and funding / T \ can’t avoid

goals and facility
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Cold Antiprotons
and
Antihydrogen
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High Precision Tests of CPT Invariance
The Most Precise CPT Test with Baryons = by TRAP at CERN

A B A B ¢ B
&> & CE ™S 2

. Gabrielse, A. Khabbaz, D. 5. Hall, C. Heimann,
H. Kalmowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198
(199497,

g/ m (antiproton)

=—0.99999999991(9) 9x10™" =90ppt
g/ m (proton)

(most precise result of CERN’s antiproton program)

Goal at the AD: Make CPT test that approach
exceed this precision
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TRAP Improved the Comparison of Antiproton

and Proton by ~106 g/m (antiproton) _ _, 99999999991 (9)
q/m (proton)
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G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe;
Phys. Rev. Lett. 82, 3198 (1999).
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Embarrassing, Unsolved Mystery:
How did our Matter Universe @
Survive Cooling After the Big Bang?

Big bang - equal amounts of matter and antimatter
created during hot time

As universe cools = antimatter and matter annihilate

Big Questions:
 How did any matter survive?

* How is it that we exist?

Our experiments are looking for evidence of any way that
antiparticles and particles may differ
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Our “Explanations’ are

@ Not so Satisfactory @

Baryon-Antibaryon Asymmetry in Universe is Not Understood

Standard “Explanation” Alternate
e CP violation e CPT violation
e Violation of baryon number e Violation of baryon number

e Thermodynamic non-equilibrium e Thermo. equilib.

Bertolami, Colladay, Kostelecky, Potting
Phys. Lett. B 395, 178 (1997)

Why did a universe made of matter survive the big bang?
Makes sense look for answers to such fundamental questions
in the few places that we can hope to do so very precisely.

Bigger problem: don’t understand dark energy
within 120 orders of magnitude
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Why Compare H and ﬁ (or P and E)?

Reality is Invariant — symmetry transformations
== parity
-E&P=  charge conjugation, parity
CPT charge conjugation, parity, and time reversal

CPT Symmetry
-> Particles and antiparticles have
e same mass e same magnetic moment
 opposite charge e same mean life
- Atom and anti-atom have
—> same structure

Looking for Surprises
e simple systems  reasonable effort
e extremely high accuracy  FUN
e comparisons will be convincing
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Comparing the CPT Tests

Warning — without CPT violation models it is hard to compare
CPT Test Measurement

Accuracy  Accuracy

K,K, 2x10'8  2x103

i

etes 2x1012 2x107°

\ improve with
/ antihydrogen
PP 9x10M 9x 101

1!

3 fundamentally different types of particles
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Seek to Improve Lepton and Baryon CPT Tests

antihydrogen 1s-2s
unlikely natural

dream linewidth In a trap
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Ultimate Goal: Hydrogen 1s — 2s Spectroscopy
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Many fewer antihydrogen atoms will likely be available
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Cold Antiproton Physics is Now Routine
Cold Antihydrogen is Routinely Made
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Only Accessible Antiprotons are at CERN

SRS

France

........

Switzerland
(Geneva)

Unusual for AMO experiment to be done over an ocean
Must conform to accelerator schedule

Environment not very amenable to precise AMO methods
No AMO funding source for facility upgrades

Data rate 1s very slow
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Accumulating Low Energy Antiprotons:
Basic Ideas and Demonstrations (1986 — 2000)
TRAP Collaboration I cm

at CERN’s LEAR magnetic
field
>
21 MeV
antiprotons
1019
energy
_ + _ reduction
* Slow antipr(?tons in n?att(?r Now used by 3 collaborations
e Capture antiprotons in flight at the CERN AD
* Electron cooling > 4.2K ATRAP, ALPHA and ASACUSA
*5x 107 Torr

Supported by AFOSR
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Antiproton Capture — the Movie
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"First Capture of Antiprotons in a Penning Trap: A KeV Source',

G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R. Tjoelker, T.A. Trainor, H. Kalinowsky,
J. Haas, and W. Kells;

Phys. Rev. Lett. 57, 2504 (1986).
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Electron-Cooling of Antiprotons —in a Trap
e Antiprotons cool via collisions with electrons

e Electrons radiate away excess energy

A —

P
>
S

& p
L
©
3
<

.

Z position

""Cooling and Slowing of Trapped Antiprotons Below 100 meV"',
G. Gabrielse, X. Fei, L.A. Orozco, R. Tjoelker, J. Haas, H. Kalinowsky, T.A. Trainor, W. Kells;
Phys. Rev. Lett. 63, 1360 (1989).
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How?
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Proposal to Trap Cold Antihydrogen — 1986

e Produce cold antihydrogen from cold antiprotons

“When antihydrogen 1s formed in an ion trap, the neutral atoms will no longer be
confined and will thus quickly strike the trap electrodes. Resulting annihilations of
the positron and antiproton could be monitored. ..."

e Trap cold antihydrogen
e Use accurate laser spectroscopy to compare
antihydrogen and hydrogen

“For me, the most attractive way ... would be to capture the antihydrogen in a
neutral particle trap ... The objective would be to then study the properties of a small
number of [antihydrogen] atoms confined in the neutral trap for a long time.”

Gerald Gabrielse, 1986 Erice Lecture (shortly after first pbar trapping)
In Fundamental Symmetries, (P.Bloch, P. Paulopoulos, and
R. Klapisch, Eds.) p. 59, Plenum, New York (1987).

Use trapped antihydrogen

to measure antimatter gravity (. Gabrielse, Hyperfine Interact. 44, 349 (198R%)



.

Gabrielse

Two Methods Produce Slow Antihydrogen

In a nested Penning trap, during positron cooling of antiprotons

Device and technique — ATRAP
Used to produce slow antihydrogen — ATHENA and ATRAP

Variations: Basic (ATRAP initially, ATHENA-ALPHA)
Driven (ATRAP before 2007)
Adiabatic well depth change (ATRAP 2007)

Laser-controlled resonant charge exchange

ATRAP



Anti-H Method 1: Nested Penning Trap

3-Body ‘‘Recombination”

Volume 129, number 1 PHYSICS LETTERS A ’f;- Fai 2 May 1988

9

ANTIHYDROGEN PRODUCTION USING TRAPPED PLASMAS

G. GABRIELSE, S.L. ROLSTON, L. HAARSMA
Department of Physics, Harvard University, Cambridge, MA 02138, USA

and

W. KELLS y
Fermi National Accelerator Laboratory, Batavia, IL 60438, USA

b e R s oh

Ui e S R r
P . e : “Vp We call attention to another three-body
antiprotons positrons - -
-vp recombination
Vit p~+et+etsH+et, (6)
o (b) which may well be more efficient for antihydrogen

. : . production by many orders of magnitude. Its cross
Fig. 1. Electrodes (a) and axial potential (b) for a nested pair of , , - - . e

Penning traps. . . .
""" Nested Penning Trap 3-Body “Recombination”




Positron Cooling of Antiprotons Gabrielse
in a Nested Penning Trap

P

e+

"

TRAP/ATRAP Develops the Nested Penning Trap

Proposed nested trap as a way to make antihydrogen
""Antihydrogen Production Using Trapped Plasmas"
G. Gabrielse, L. Haarsma, S. Rolston and W. Kells
Physics Letters A 129, 38 (1988)

""Electron-Cooling of Protons in a Nested Penning Trap"'
D.S. Hall, G. Gabrielse
Phys. Rev. Lett. 77, 1962 (1996)

"First Positron Cooling of Antiprotons"
ATRAP
Phys. Lett. B 507, 1 (2001)
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Anti-H Method II: Antihydrogen Via Laser-Controlled
Resonant Charge Exchange

lonization
electric
field

antiproton H

trap detection
trap

8522 nm

1 T 852 nm
-k 10 mW
cesium oven i

ATRAP, Phys. Rev. Lett. 93, 263401 (2004)
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What is Happening Now



1986 2012 Gabrielse
1 Collaboration = 4 Collaborations

Following the 1986 plan:  Variations

cold antiprotons

|

cold antihydrogen colder antihydrogen
trap antihydrogen extract from trap
precise laser spectroscopy laser spectroscopy interferometry

ATRAP and ALPHA ASACUSA AEGIS
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Variations of Magnetic Traps

current bars  pinch coils

quadrupole-loffe trap
addition

higher order Ioffe trap

e Deeper antihydrogen well
within trap electrodes (in principle)
 Tighter confinement of antihydrogen
 Easier radial access for cooling and
spectroscopy lasers

* Less magnetic gradient
gives longer charged
particle storage

* Less magnetic gradient

gives make it easier to
produce antihydrogen
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ATRAP’s Most Recent Antihydrogen Trap

(a)
p= [@ LCHE

electrodes

(b) x
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10 cm . p location for stability test



Gabrielse

ATRAP II Trap Apparatus

positrons enter
refrigerator

superconducting
solenoid

loffe trap

laser windows 18 m

scintillating
fiber detector

antiprotons enter
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o
Slow antihydrogen
Gerald Gabrielse
The quest to precisely compare cold antihydrogen and hydrogen atoms

should enable physicists to test our understanding of one of reality’s
fundamental symmetries.

Gerald Gabrielse is the Leverett Professor of Physics at Harvard University in Cambridge, Massachusetts and is the spokesperson for the
ATRAP collaboration at CERN in Geneva.

Figure 1. Key components of the

|2—m| Magl‘e g ATRAP apparatus that accepts antipro-
. " =T tons from the antiproton decelerator
& L Liquid-helium dewar- at CERN and slows positrons from a
2204 IF Positron il’ e sodium-22 source. The goal of the
positron accumulator experiment is to trap and study cold
source traps Superconducting solenoid antihydrogen atoms in the specially

designed magnetic fields of the
loffe trap.

5-MeV antiprotons from CERN's antiproton decelerator ——

68 March 2010 Physics Today © 2010 American Institute of Physics, S-0031-9228-1003-350-8
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2008 First Antihydrogen Production within a Penning-lIoffe Trap

G. Gabrielse,!* * P. Larochelle,! D. Le Sage.! B. Levitt.,! W.S. Kolthammer.! R. McConnell.!
P. Richerme.! J. Wrubel,! A. Speck.? M.C. George,** D. Grzonka.* W. Oelert,® T. Setzick.?
Z. Zhang.® A. Carew.! D. Comeau,? E.A. Hessels.* C.H. Storry,* M. Weel,* and J. Walz®
(ATRAP Collaboration)

"Dept. of Physics., Harvard University, Cambridge, MA 02138
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IKP, Forschungszentrum Jilich GmbH, 52425 Jilich, Germany
“York University, Department of Physics and Astronomy, Toronto, Ontario M3J 1P3, Canada
®Institut fur Physik, Johannes Gutenberg-Universitit, D-55099 Mainz, Germany
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ATRAP - observed the first production of antihydrogen atoms
in the fields of a Ioffe trap (PRL 2008)

Less than 20 atoms were being trapped per trial
ALPHA - did similar production the following year

two directions

- .

ATRAP ALPHA
Try to make more atoms Try to detect fewer atoms

5 +/- 1 per trial @ 0.7 +/- 0.3 per trial
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ATRAP - More Antiprotons, Much Colder,
More Simultaneously Trapped Atoms

* Lowered electrode temperature to 1.2 K
* Started measuring antiproton temperatures
* Developed new pbar cooling methods

First antiprotons cold enough to centrifugally separate from the

electrons that cool them
Phys. Rev. Lett. 105, 213002 (2010).

Two new cooling methods for antiprotons
-- embedded electron cooling

-- adiabatic cooling
Phys. Rev. Lett. 106, 073002 (2011).

—> | 3 million antiprotons at 3.5 K
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Colder Electrodes: 4.2 K 2> 1.2 K

4.2 K helium dewar
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millions of antiprotons

Gabrielse

10 Million Cold Pbar/Trial at ATRAP

0.4 million =2 10 million
(5.4 Tesla) (1 Tesla)

accumulation time in minutes

.,...,...., o -
.,...,..., ,, 1 T Sl
,,,, i'
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number of injections
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PHYSICAL REVIEW LETTERS

week ending
19 NOVEMBER 2010

ATRAP

Centrifugal Separation of Antiprotons and Electrons

G. Gabrielse,"* W. S. Kolthammer.' R. McConnell,' P. Richerme.' J. Wrubel."*" R. Kalra,! E. Novitski.! D. Grzonka.>
W. Oelert.? T. Sefzick,” M. Zielinski,? I.S. Bnrhely.j D. Fitzukerley—nj M.C. Genrge.j E.A. Hessels,” C.H. Sl[]l‘l‘)—".ﬂ
M. Weel.> A. Miillers.* J. Walz.* and A. Speck’
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* Important for arranging efficient overlap

of antiprotons and a positron plasma

* Important for understanding the heating
of antiprotons when electrons are ejected
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Trapped Antihyvdrogen in Its Ground State

G. Gabrielse,!* R. Kalra,! W.S. Kolthammer,! R. McConnell,! P. Richerme,! D. Grzonka,”> W. Oelert,? T. Sefzick,?
M. Zielinski,? D.W. Fitzakerley,®* M.C. George,® E.A. Hessels,> C.H. Storry,® M. Weel ® A. Miillers,* and J. Walz*
(ATRAP Collaboration)

'Dept. of Physics, Harvard University, Cambridge, MA 02138
2IKP, Forschungszentrum Jilich GmbH, 52425 Jilich, Germany
*York University, Department of Physics and Astronomy, Toronte, Ontario M3J 1P3, Canada
 Institut fiir Physik, Johannes Gutenberg Universitit and Helmholtz Institut Mainz, D-55099 Mainz, Germany

Antihydrogen atoms {ﬁ} are confined in an loffe trap for 15 to 1000 seconds — long enough to
ensure that they reach their ground state. Though reproducibility challenges remain in making large
numbers of cold antiprotons (F) and positrons (e”) interact, 5 + 1 simultaneously-confined ground
state atoms are produced and observed on average, substantially more than previously reported.
Increases in the number of simultaneously trapped H are critical if laser-cooling of trapped H is to
be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.
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Detecting Trapped Antihydrogen

Penning tra
g a0 2 straight & 2 helical

electrodes :
/ fiber layers
|

784 scintillating
e, 110CTS

field-boosting solenoid

loffe pinch coils

loffe racetrack coils
loffe pinch coils

big scintillating paddles
surround the solenoid dewar
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Penning-loffe Trap
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After 15 to 1000 s, Turn Off theTrap =2 Quench

Record antihydrogen annihilation
signal in time short compared to
time between cosmic ray events.

Penning trap

2 straight & 2 helical
fiber layers

W Show precisely when trapped
S gy Antihydrogen should annihilate

field-boosting golenoid &

measure flux integrate

loffe pinch coils
IF;ffe racetrack coils Change tO get B(t)

loffe pinch coils _— ) .

_ (@) 350 (b)
208 X300
use solenoid £0.6 £ 290
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detector 245 g100
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Detection of Trapped Antihydrogen
784 BICRON BCF-12 scintillating fibers

* 435 nm peak emission
2./ m attenuation length

Penning trap
___ electrodes

2 straight & 2 helical

/fiber layers

field-boosting solenoid &5

loffe pinch coils

loffe racetrack coils
|offe pinch coils

large plastic scintillator paddles
* | m high
* outside picture

Coincidence — no cuts (MHz)
* 54% efliciency for pbar ann.
* 41 Hz cosmic ray background

Time-stamped events (kHz rate)
* radially spilled antiprotons
* COSMIC rays
* evaluate 4096 detector
combinations

Best signal-to-noise
* 33% detection efficiency
* 1.7 Hz cosmic ray background
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Goal for 2011 Was to Obtain a Lot More
Simultaneously Trapped Antihydrogen Atoms

—> Enough to see trapped antihydrogen every trial

Tried a variety of methods to make the antiprotons and positron interact

> 20f T 475 ,
c 10} ya N A @) 150> e 2 ms coherent drive
s o— |\ \i’%\ T S——125F , ,
£-10¢} T 100 E * 15 minute noise
=-20f -\ 175 © ) :

0 b o & broadened drive

Did not see (yet) the clear signal for every trial = averaged all trials
together
* not what one wants to do on the long term
* see 1f antihydrogen is being made
* averaged over the different methods = 5 +/- 1 trapped
antihydrogens per trial



1.7 Hz background, 33% efficiency
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Detector Counts During Quench (1 second)
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What Kind of Antihydrogen Atoms Are These?
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number of antihydrogens, N
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A few Atoms Are Have Chaotic Dynamics

p is less than this value in um

Coulomb attraction
and magnetic forces

are comparable

—> chaotic positron

motion

actual orbit resulting from

guiding center initial conditions
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These are Ground State Antihdyrogen Atoms

Conservative lifetime limit: Circular states decay most slowly

Start: n = 50 circular state, lifetime = 30 ms ~ 1/n°

Cascade to ground state
takes 0.5 s

In with collisions and field

the decay must be much
faster

Antihydrogen atoms are
in trap for 15 to 1000 s)

]

prob. to B in ciroalar state

(IR

(m=1=n-1)

1

|
n.s |
|
|
|

0.6 - l

0.6
timy i secoruds
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Gravity

GG. Gabrielse, Hyperfine Interact. 44, 349 (1988)



Gabrielse

Crude Antigravity Limit

Gravity force on hydrogen: Mg ATRAP 2011
Gravity force on antihydrogen:  sMg

To have a trap: |&| < W/(Mgh) = 3.x 10°

Since many antihydrogen atoms leave quickly: K| < 2 x 102
(as trap goes from 375 mK to 350 mK) | | |

Our earlier gravitational redshift limit 1s much more stringent

Antiproton and proton

K — 1] < 1x 1076
clocks run at the same rate, < 1019 s - - -

Experiment
A B A B
G. Gabrnelse, A. Khabbaz, D. 5. Hall, C. Heumann,
H. Kalmowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198
@IS @EI> a09)
Theory

R. J. Hughes and M. H. Holzscheiter, Phys. Rev. Lett.
66, 854 (1991).
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Direct Measurement of the Proton Magnetic Moment

J. DiSciacca! and G. Gabrielse!:*

IDept. of Physics, Harvard Umniversity, Cambridge, MA 02135
(Dated: January 14, 2012)

The proton magnetic moment in nuclear magnetons is measured to be p, /uny = g/2 = 2.792 846 +
0.000007, a 2.5 ppm (parts per million) uncertainty. The direct determination, using a single proton
in a Penning trap, demonstrates the first method that should work as well with an antiproton (p)
as with a proton (p). This opens the way to measuring the p magnetic moment (whose uncertainty
has essentially not been reduced for 20 years) at least 10% times more precisely.

Earlier contributions

[12] N. Guise, J. DiSciacca, and G. Gabrielse, Phys. Rev.
Lett. 104, 143001 (2010).

[14] S. Ulmer, C. C. Rﬂdeg'heri._'K. E’-lauﬁl._ H. Kracke,
A. Mooser, W. Quint, and .J. Walz, Phys. Rev. Lett.
106, 253001 (2011).
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Why Measure the Antiproton Magnetic Moment

CPT test — compare with proton moment

precision

10'2 | | T I TR 1

% i antiproton =
) (indirect) .
10+ | -
105 _proton (indirect) oroton (direct) 1
106 |-® o (this work) .
107 & i
107 [ | @ | | I | _

1960 1970 1980 1990 2000 2010
year
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Proton Magnetic Moment Measurements

(method cannot be applied to antiprotons)

9p _ He Mp ;”-p(H) J”-E(H) Hp

I..p
UN 2 ppme pe(H) pe pp(H)

theory corrections
1 ppb
free electron

magnetic  0.0003 ppb
moment

/

10 ppb hydrogen
maser

2 ppb or 0.7 ppb

bound electron
magnetic
ppb =107 moment
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Insiration: Electron (Positron) Magnetic Moment
Measurements to 3 x 10-13

e Harvard 2008
——=e—  Harvard 2006 UW 1987

180 182 184 186 188 190 192
(g/2 - 1.001 159 652 000) / 102

(improved measurement is currently underway)

electron magnetic moment in Bohr magnetons

Can do as well with positron as with electron to compare

Can We Do A Similar Measurement with Antiprotons?

Harder: nuclear magneton rather than Bohr magneton
uN/ g = me/my, ~ 172000



One-Particle Method

With one proton or antiproton suspended in a trap,
measure spin and cyclotron frequencies

Up  Gp f S
1N 2 f c

No previous method has been devised to measure
antiproton and proton moments in the same way

Gabrielse
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190 times larger than used for electron
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Spin-Flips Increase Allan Deviation

Allan deviation (Hz)
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Direct Measurement of the Proton Mag. Moment
Hp _ Yp s

2 .

E | | I | 'I(b)

'% o, 300°F & 1

£ I

E (200} |

8 o 0002

: (100°L I

) o=, |,
20 0 20 40 60 80 5 0 5 10 15

f-221296.5 kHz f-79 231.5 kHz

Hp 9 _ 9 709846 + 0.000007 2.5 ppm]
v 2

Harwvard: g/f2 = 5.585 &92 +/= 0.000 Qo7 Z 5068.4 ppb
CODATA: gf2 = 5.585 694 T13 +/- 0.000 000 023 g.24 ppb



Could Now Realize a Thousand-fold

Gabrielse

Improved Measurement of the Antiproton Moment

precision

102
103
104
10
10
10
108

ASACUSA

| proton (indirect)

antipr'oton =

(indirect)

proton (direct)
%o o (this work) o
s ® . | : .
1960 1970 1980 1990 2000 2010
year

ATRAP

2012
77

Later

If everything went exactly right it would be possible to do this
with antiprotons in 2012

—> currently under consideration

Expect to eventually be more precise than all proton measurements
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Method II: Antihydrogen Via Laser-Controlled
Resonant Charge Exchange

lonization
electric
field

positron  ©eg
trap

Cs*

antiproton H

trap detection
trap

8522 nm

1 T 852 nm
| diode laser
cesium oven il

ATRAP, Phys. Rev. Lett. 93, 263401 (2004) -- demo with a few atoms
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200 Times More Antihydrogen Made Per Trial

(compared to proof-of-principle demonstration)

Antiprotons: 5 million

on—axs potential (V)

. . 113 3600 + 610 H
Positrons: 300 million
& o I 852 nm laser on resonance
o SELEe FELLELE & 5 4000 f 0 +
a
+ . det. W
plasma otma )l |5 | trialat9.3 Hz
8 5000l trial at 117 Hz
(b Cs” '§
300 i T E
| :
200 - /,: 'I\ -'é' 0 T
, N o
100} ! c
L= — (14
m / a I % @
or & 2000+
ﬁ B
-100 : ' ' :
-5 o 5 10 | 1
z (em) —A000 F 852 nm laser off resonance

Remains to see if this can be done 1n a loffe field



Gabrielse

Progress in 2011

Repeated results of previous year =2 will now publish
Started to use adiabatically-cooled antiprotons

Started to do 1n presence of the loffe trap fields
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Plan for 2012
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Second Generation loffe Trap

Glued together vacuum system
e rapid switch off
* laser ports
* very challenging (company failed)
Fully assembled, vacuum tested cold (many cycles)
Wiring finished this week
Cold testing at high current = soon
Intend to use from the beginning of the 2012 run

second generation loffe trap

ports for laser and microwaves
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Plan for 2012

Use second generation loffe trap

* expect some learning curve but testing this spring

* expect more trapped antihydrogen

* expect to turn off the trap repeatedly during a shift

* investigate energy distribution of antihydrogen in trap

tion for | i
(preparation for laser cooling) tempting to start but ...

Try to trap antihydrogen made by laser-controlled charge exchange

e profit from adiabatic cooling

e profit from second generation Ioffe trap

Parasitic operation to measure antiproton magnetic moment
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Summary

Control of bigger and colder antiproton and positron plasmas
New cooling methods
More antihydrogen from laser-controlled charge exchange
Trapped antihydrogen with

—> prospects for much more in 2012  (new loffe trap)
New antiproton magnetic moment measurement

- 1000 - fold improved comparison of antiproton

and proton magnetic moments “soon’



