ICHEP 2022 6 13 07 2022 International Conference on High Energy Physics (Bologna (Italy) # Testing CPT symmetry in ortho-positronium decays with the J-PET detector July 8th 2022 Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University ### Motivation: discrete symetry tests with o-Ps $\rightarrow 3\gamma$ decays - Discrete symmetries are scarcely tested with leptonic systems - Prominent results from neutrinos oscillation experiments - Dirac phase, δ_{CP} ~3 σ level [T2K, *Nature* 580 (2020) 339] - Electron EDM < 1.1x10⁻²⁹ [ACME, Nature 562 (2018) 355] - Positronium the lightest purely leptonic bound state, the only system consisting of charged leptons used for tests of CP and CPT to date ## How can we test discrete symmetries in the positronium system? - Searches for **prohibited positronium annihilations** - SME-based searches for CPT violation proposed with positronium spectroscopy [Phys. Rev. D92 (2015) 056002] #### Searches for non-vanishing symmetry-odd correlations #### Testing discrete symmetries with angular correlations in o-Ps \rightarrow 3 γ decays $$ec{S} \cdot (ec{k_1} imes ec{k_2})$$ T & CPT-violation sensitive $ec{S} \cdot ec{k_1}$ CP-violation sensitive $$\left\langle \hat{O} \right\rangle \stackrel{?}{=} 0$$ for an odd operator $$\Leftrightarrow \mathcal{CPT}(\hat{O}) = -1$$ $$\Leftrightarrow \mathcal{T}(\hat{O}) = -1$$ [W. Bernreuther et al., Z. Phys. C41 (1988) 143] [P. Moskal et al., Acta Phys. Polon. B47 (2016) 509] #### **Event-by-event spin estimation** Using an extensive-size o-Ps production and annihilation medium 8.07.2022 #### The J-PET detector and ortho-positronium production - Conceived as the 1st Positron Emission Tomograph based on plastic scintillators - At the same time a robust photon detector for fundamental research! - 192 scintillator strips (50 cm long) arranged in 3 concentric layers [J-PET: NIM A 764 (2014) 317-321] [J-PET: NIM A 764 (2014) 186-192] [J-PET: NIM A 786 (2015) 105-112] [J-PET: NIM A 786 (2015) 103-112] [J-PET: NIM A 775 (2015) 54-62] See yesterday's talk by Shivani in Technology and Industrial Applications - Extensive-size chamber, R=12 cm - Walls coated with porous silica material enhancing o-Ps formation - 10 MBq β⁺ emitter (²²Na) placed in the center of the chamber ### J-PET vs previous measurements #### Gammasphere PRL. 91 (2003) 263401 $$C_{CPT} = (2.6\pm3.1)\times10^{-3}$$ $$\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$$ $$P_{e+} = \frac{v}{c} \cdot 0.686$$ - Limiting e+ emission direction - 1 Mbq β⁺ emitter activity - 4π detector but low angular resolution #### Yamazaki et al. PRL 104 (2010) 083401 $$C_{CP} = (1.3\pm2.1\pm0.6)\times10^{-3}$$ $$(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$$ - Polarized o-Ps using external B field - Inclusive measurement - Only certain angular configurations - Recording multiple geometrical configurations - e+ spin estimated event-by-event $P_{e+} \approx \frac{\upsilon}{c} \cdot 0.91$ - Plastic scintillators = fast timing \rightarrow using high β^+ emitter activity (tested up to 10 Mbq) - Recording all 3 annihilation photons - Angular resolution at 1° level ### Reconstruction of o-Ps \rightarrow 3 γ decays in J-PET 1. Find the decay plane containing the 3 hits in the J-PET barrel 2. Transform the hit coordinates to a 2D coordinate system in the decay plane $(X_i, Y_i, Z_i, T_i) \rightarrow (X'_i, Y'_i, 0, T_i)$ 3. For each of the recorded γ hits, define a circle of possible origin points of the incident γ assuming o-Ps decay at time t 4. The decay point (x',y') in the decay plane and time t is an intersection of 3 such circles: $$(T_i - t)^2 c^2 = (X_i' - x')^2 + (Y_i' - y')^2, \quad i = 1, 2, 3$$ ### Identification of o-Ps \rightarrow 3 γ events in J-PET Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip \rightarrow a measure of γ deposited energy Confirming o-Ps presence with positron lifetime distribution ### Treatment of main background sources 511 keV 1275 keV 511 keV #### **Secondary Compton** scatterings - Secondary Compton-scattered photons may be recorded by J-PET again - For each pair of annihilation photon candidates i and j (i,j=1,2,3) we compute: #### 2y from the β + source setup - Using angular topology of the event in XY detector plane - Considering all hypothetical back-to-back 2y pairs (tomographic "Lines Of Response") 8.07.2022 ### Evaluation of the CPT-asymmetric observable $$\hat{S} \cdot (\vec{k}_1 \times \vec{k}_2) / |\vec{k}_1 \times \vec{k}_2| = \cos\theta$$ Standard asymmetry: $$A = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \quad N_{+} \Leftrightarrow \cos\theta > 0$$ is generalized by the **mean value of cos\theta**: $$\frac{\int N(\cos\theta)\cos\theta}{\int N(\cos\theta)}$$ #### J-PET is sensitive to the full range of the operator Expected effect with CPT-asymmetric simulations (exaggerated violation) [Symmetry 12 (2020) 8, 1268] 0.5 1.0 ### Results of the 1st CPT test with J-PET Using 2×10^6 of identified o-Ps $\rightarrow 3\gamma$ annihilations 3y image of the o-Ps production chamber in the tranverse view of the detector The first image of an extensive-size object obtained with o-Ps $\rightarrow 3\gamma$ annihilations $\hat{S} \cdot (\vec{k}_1 \times \vec{k}_2) / |\vec{k}_1 \times \vec{k}_2| = \cos\theta$ $$C_{\text{CPT}} = \langle O_{\text{CPT}} \rangle / P = 0.00067 \pm 0.00095$$ 37.4% (polarization-dominated) Nature Commun. 12, 5658 (2021) # Towards the sensitivity of 10⁻⁵ - New J-PET with dense geometry & digital SiPM readout - Spherical annihilation chamber to enhance e+ utilization # Summary and further perspectives - The J-PET detector is capable of exclusive registration of o-Ps $\rightarrow 3\gamma$ annihilations - Full event recontruction including determination of the annihilaiton point in an extensive-size medium - Estimation of o-Ps spin on an event-by-event basis - The first image of an extensive-size object otained solely with o-Ps annihilations - Sub-permil precision of the CPT test reached with the first J-PET measurement - J-PET aims at the sensitivity of the CP and CPT symmetry tests at the level of 10^{-5} with an improved positronium production and photon detection setup # Thank you for your attention! This work is supported in the framework of the TEAM POIR.04.04.00-00-4204/17 Programme of the Foundation for Polish Science # Backup Slides ### Evaluation of the experiment's sensitivity - MC-simulating same statistics as experimental data - Artificially inducing different levels of CPT violation - Applying identical analysis as used on data - Testing observed level of violation (C_{CPT}) Different colors denote independent simulations #### Testing discrete symmetries with ortho-positronium If polarization direction of the photons (ϵ) can be estimated, a new class of operators becomes available for measurement! | operator $ec{S} \cdot ec{k_1}$ | С | Р | Т | CP | CPT | |--|---|---|---|----|-----| | $ec{S} \cdot (ec{k_1} imes ec{k_2})$ | + | _ | + | _ | _ | | $(ec{S} \cdot ec{k_1})(ec{S} \cdot (ec{k_1} imes ec{k_2}))$ | + | + | _ | + | _ | | $\vec{k}_{2} \cdot \vec{\epsilon}_{1}$ | + | _ | _ | _ | + | | $ec{S} \cdot ec{\epsilon}_1$ | + | _ | _ | - | + | | $ec{S} \cdot (ec{k}_2 imes ec{\epsilon}_1)$ | + | + | - | + | _ | | (12/101) | + | _ | + | _ | _ | [W. Bernreuther *et al., Z. Phys. C41 (1988) 143*] [P. Moskal *et al., Acta Phys. Polon. B47 (2016) 509*] J-PET can determine the scattering plane in events with secondary Compton scatterings! $$ertec{k_1}ert > ertec{k_2}ert > ertec{k_3}ert$$ A. Gajos, ICHEP 2022 # The J-PET Detector - Constructed at the Jagiellonian University - Fist PET device using strips of plastic scintillators At the same time: a robust photon detector for fundamental research! # The J-PET Detector - Constructed at the Jagiellonian University - Fist PET device using strips of plastic scintillators - At the same time: a robust photon detector for fundamental research! A. Gajos, ICHEP 2022 # O-Ps creation and decay [1] P. Kubica and A. T. Stewart, Phys. Rev. Lett. 34 (1975) 852[2] M. Harpen Med. Phys. 31 (2004) 57-61 [3] J Cal-Gonzalez et al, Phys. Med. Biol. 58 (2013) 5127-5152 # Distinguishing o-Ps $\rightarrow 3\gamma$ and e⁺e⁻ $\rightarrow 2\gamma$ Figure 9. (Left) Simulated distributions of differences between detectors ID (Δ ID) and differences of hittimes (Δ t) for events with three hits registered from the annihilation e+e- $\rightarrow 2\gamma$ (gold colours) and o-Ps $\rightarrow 3\gamma$ (green colours). (Middle) Disribution of relative angles between reconstructed directions of gamma quanta. The numbering of quanta was assinged such that $\theta_{12} < \theta_{23} < \theta_{31}$. Shown distributions were obtained requiring three hits each with energy deposition larger than Eth = 50 keV. Gold colour scale shows results for simulations of e+e- $\rightarrow 2\gamma$ and green scale corresponds to o-Ps $\rightarrow 3\gamma$. Typical topology of o-Ps $\rightarrow 3\gamma$ and two kinds of background events is indicated. (Right) Detection efficiency of the J-PET detector for registration of one, two and three gamma quanta from o-Ps $\rightarrow 3\gamma$ decay. The efficiency is shown as a function of threshold energy applied in the analysis to each gamma quantum. #### Time-Over-Threshold as a measure of deposited γ energy Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip The relation between TOT and energy deposited by a photon in Comton scattering is under an extensive study right now. ### Angular topology of the 3γ events # Signal & background events # Detector improvements # Expected sensitivity 25 # Control of detector asymmetries $$(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$$ - Insensitive to CPT violation in absence of o-Ps tensor polarization - No B field used in the current experiment => we expect <0> unless spurious asymmetries originate from detector/chamber geometry $$<0> = (0.99 + / - 1.7) x 10^{-4}$$ ## o-Ps \rightarrow 3 γ operators involving spin #### **Presently studied with J-PET:** $$ec{S} \cdot (ec{k_1} imes ec{k_2})$$ T & CPT-violation sensitive $ec{S} \cdot ec{k_1}$ CP-violation sensitive #### **Event-by-event spin estimation** Using an extensive-size o-Ps production and annihilation medium 8.07.2022 $$(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$$ T & CP-violation sensitive but requires o-Ps tensor polarization \rightarrow not available with the current J-PET approach Effective polarization depends on o-Ps \rightarrow 3 γ vertex resolution