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1. Introduction 

 

Technological advances bring innovation in nowadays evidence-based medical examination among 

others by means of computer science related research areas. Imaging of interior of living systems can 

provide information on its structure, anatomy and functional information. Magnetic resonance imaging 

(MRI) and Computed Tomography (CT) provide excellent details on structure and anatomy of organs. 

Nuclear medicine techniques complement the insight into human body by providing functional 

information like metabolic processes. Positron Emission Tomography (PET) has introduced a new 

aspect to existing approaches. 

The aim of this work is to implement selected data processing stages for Modular J-PET detector readout 

and explore feasibility of hardware acceleration of image reconstruction. Moreover, this work covers 

main aspects of FPGA design process.  

 

1.1. PET Tomography 

 

Imaging technique creates visual representation of interior by means of analysing specific physical 

phenomena. One of the most common type of imaging is tomography, where visualization is constructed 

by combining together cross sections of examined object.  

There are many categories of tomography depending on used physical phenomena and they are deployed 

in wide range of medical, scientific and industrial applications. Some tomography types worth to 

mention are: 

• Positron Emission Tomography, where positron decays are used for imaging purposes. 

Commonly applied in medical imaging [1]. 

• Computed Tomography (CT), where gamma rays are used for creating cross sections. Widely 

used in industrial and medical applications [2]. 

• Optical Coherence Tomography (OCT), where optical signals are transmitted through or 

reflected by a tissue, these signals are used to reconstruct spatial image of tissue. Applied in 

ophthalmology [3]. 

• Atom-Probe Tomography, where mass-to-charge ratio is computed for atoms using electric field 

in complex set-up. This method is used in material sciences for examination of material 

composition [4]. 
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• Nuclear Magnetic Resonance tomography (NMR), where resonance induced by magnetic field 

is used for spatial imaging. Most often found in medical applications [5].  

Basically, in Positron Emission Tomography radiopharmaceutical substance is injected into patients’ 

body. Emitted positrons annihilate with electrons and produce two gamma quanta. The substance is 

distributed all over human body through blood and gets metabolized by organs. Depending on type of 

cells the level of metabolism differs. Cancerous cells have typically much higher level therefore they 

absorb more of the substance. This in turn results in more gamma pairs emitted from a particular 

location. Important feature of the gamma pair is that they are released in opposite direction in respect to 

each other. That sort of events is fundamental for imaging purposes. Except emission in opposite 

direction other phenomena are present, so one of challenges is to properly classify and filter gathered 

experimental data. Valid type of events creates Line-Of-Response (LOR) [Figure 1]. Large dataset of 

LORs that is appropriate to be analysed with statistical methods is primary source of information for 

imaging algorithms. Raw geometrical information on classified events is not enough for nowadays 

positron emission medical imaging setups. Except geometry it is crucial to precisely measure time of 

events. That sort of timing information adds advanced filtering and classifying prospects and is 

effectively used in imaging with PET facilities of Time of Flight (TOF) type. To define TOF it is worth 

to introduce coincidence as two gamma quanta hitting opposite detectors within short time distance. 

They can be considered as a single decay event data. Based on that time difference measurement one 

can calculate location of each annihilation event. If perfect TOF resolution could be achieved, then there 

would be no need for reconstruction, because exact location would be derived based on analysed 

phenomenon. Time of Flight measurement imperfection infers quality of the reconstructed image. About 

12 cm uncertainty in annihilation location is induced by time difference resolution of around one 

nanosecond. That regions of possible event location are described as Region-of-Response (ROR) 

[Figure 1]. Moreover, TOF data provides information on detector quality, readout electronics and based 

on that proper calibration can be developed. 

 

Figure 1 LOR and ROR scheme on detector ring 
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1.2. Data acquisition systems 

 

Since early beginnings of experimental sciences, the process of observation was crucial in conducting 

research, just after proper design of experiment. With development of science and technology it became 

possible to automate monitoring of physical phenomena. Advances in electronics and computer science 

enabled appropriate form of gathering, processing and archiving certain information from physical 

signals, which states in the genesis of Data Acquisition System (DAQ). Nowadays, sensing subsystem, 

its transition to digital domain, processing and storage units combined together are described as DAQ.  

Design of feasible DAQ is considered in reference to its application requirements derived from nature 

of measured signals. For applications where signals and systems do not require advanced, customized 

control and data processing, it is commercially viable to use off-the-shelf solutions. However wide range 

of products and experimental setups must have customized hardware and software solutions because of: 

• high-level of specialization and complexity in data acquisition process, 

• cost, energy and performance optimizations 

One of the most representative branches of science where state-of-the-art technologies in DAQs are 

those commonly used is experimental particle physics. The reason of that is the need for customized 

setup often dedicated to particular experiment [6]. 

Tomographic data processing and visualization system components can be classified as subset of High 

Energy Physics DAQ elements. Therefore, description of assumptions and essential techniques will be 

presented in terms of particle physics experiment application. Specialized domain of application infers 

wide range of definitions and methods that are unique for experimental particle physics. 

Typically, high performance DAQ systems in scientific applications operate in complex environment 

interacting with experimenters, sensors, external control equipment, machines and data archiving 

subsystems. In all these interrelations data path from detector through processing for later storage and 

analysis is core element existing in majority of systems [Figure 2]. 
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Figure 2 High Energy Physics DAQ conceptual scheme 

 

Detectors are data sources for later stages of acquisition and processing. Main characteristics of detector 

in reference to DAQ design are: 

• Detector response: In general, considered as an electrical response. Connected with deposited 

energy by received particle. 

• Detector response function: Characterizes pulses for different types of radiation. 

• Response time: It is the time detector needs to form the signal after radiation. During this period 

detector is insensitive, it cannot accept another event. This contributes to dead time of detector. 

• Dead time: Finite time it takes for whole detecting system to process event. During this period 

detector can be insensitive, then data is lost. On the other hand for sensitive detector distortion 

of signal arises and data from both events is corrupted. 

• Detector efficiency: Overall benchmark that relates registered events to events emitted by 

radiation source. 

Detector characteristics have to be taken into account while developing its readout system. Next stage 

is Front-End Electronics (FEE). Pulses from detector are there conditioned and shaped for later 

interfacing with digitizing stage.  

Transformation from analog to digital domain in reference to measurement of detector signals 

characteristics can be classified in two categories. First is the precise time measurement of the moment 

when a digital signal switches its logical state. Components performing that kind of operations on signals 

are called Time-to-Digital Converters (TDC). In deliberations on time to digital conversion one can 

differentiate two types. First is based on delay chain and single clocking signal. When input signal arises, 

then its propagated through connected electronic elements with known propagation delays (i.e. registers) 

and on a clock event, values from all elements are sampled. Results of sampling are decoded with 

thermometer code decoder (N lower ‘1 in bit vector corresponds to value of N) and normalized. Second 
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approach utilizes multiphase clocking signals. Multiple clocks with various frequencies and phase shifts 

sample the input signal with well-defined intervals. With known frequency of each clock and time 

dependencies between them one can calculate duration of signal and then decode final results. After 

time measurement, acquired data is packed and sent to the next stage of processing. Other approach in 

digitization is represented by Analog to Digital Converters (ADC), which sample the analog signal with 

fixed time interval, the way oscilloscope does.  

Afterwards the digital data is pre-processed (i.e. parsed to proper data format) and filtered for data 

reduction. Then, the data is transmitted between system components, because some operations are 

executed on specific platforms. Finally, the results are processed, packed in data units and transmitted 

for Event Building, which assembles data fragments from the entire system and forwards to storage 

devices. 
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1.3. Image reconstruction 

 

Positron decays in PET tomography occurs in stochastic manner, so they can be considered in terms of 

projections of examined object from different angles. Basically, projections in image reconstruction are 

considered as integral for fixed orientation angles as seen on scheme [Figure 3].  

 

Figure 3 Projections from two angles [7] 

The more different projection acquired, the better image reconstruction can be obtained. It is possible to 

simply reconstruct image by LORs histogramization. On areas with more radiation activity, more LORs 

will appear. That simplified approach results in image that is diffused, but there is an analytical way to 

improve reconstructed image quality by filtering. 

In image reconstruction transformation that formalize projections calculation is called Radon Transform 

defined with equation (1). 

p(s, ϕ) =  ∫ ∫ 𝑓(𝑥, 𝑦) ∙ 𝛿(𝑥 ∙ 𝑐𝑜𝑠(𝜙) + 𝑦 ∙ 𝑠𝑖𝑛(𝜙) − s) 𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

    (1) 

The function 𝑝 is defined on the space of straight lines 𝐿(𝑠, 𝜙) in 𝑅2 by the linear integral along each 

line. In PET tomography Radon Transform discrete implementations take into account only part of the 

plane with LORs bounded by detecting system. In reference to Radon Transform each LOR corresponds 

to a unique pair of parameters 𝑝(𝑠, 𝜙) that matches its line [8]. In discrete case sampling infers data 

quantization, so angles 𝜙 and rays 𝑠 have limited amount of possible values. All pairs of discrete 

(𝑠𝑖 , 𝜙j)  𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 〈0, 𝑁 − 1〉 𝑎𝑛𝑑  𝑗 ∈ 〈0, 𝑀 − 1〉,    (2) 

are combined in 2D histogram, where 𝑁 and 𝑀 stands for bins count on ray axis and angle axis. Two 

dimensional histogram with Discrete Radon Transform result is known as sinogram, that naming is 

connected with nature of transform results. In example, for point source Radon Transform results in 

sinewave. 
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Sinogram construction is the first stage in Filtered Backprojection (FBP), which is a common image 

reconstruction method studied in this work. Following that in FBP filtering is performed in frequency 

domain to reduce blur. Having regard to project-slice theorem [9] projection in frequency domain can 

be obtained by 1D Fourier Transform (FT) for each 𝜙 value, where a ray is treated as variable. In this 

method, implementations of Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform 

(IDFT) are calculated. Usually DFT and IDFT processing is realized by Fast Fourier Transform (FFT) 

algorithm. After that filtering is performed. 

 

Figure 4 Filter characteristics [10] 

Basic filter in reference to FBP image reconstruction is Ram-Lak filter also called Ramp Filter, where 

frequency spectrum from each 1D FT result is scaled linearly. Low frequencies are throttled and high 

frequencies are amplified. Based on Ramp Filter few others are derived [10], with some attenuation in 

highest frequencies. In example, Shepp-Logan Filter is obtained by multiplying Ramp Filter by Sinc 

function and similarly Hamming Filter is obtained by multiplying Ramp Filter with Hamming Window 

[Figure 4]. After filtering Inverse Fourier Transform (IFT) is performed. Filtering reduces background 

noise by attenuating low frequencies. Sharpening edges and image contrast extraction is obtained by 

passing high frequencies. 
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Figure 5 Filtered Backprojection method scheme 

As a last step in image reconstruction filtered sinogram is back projected with Inverse Radon Transform  

[Figure 5]. Time of Flight information supplements projections from LORs. LORs are projected with 

higher contribution from estimated place of emission.  

Other common methods are based on modelling detection system with knowledge of detector and 

physics process. LORs are treated there as input data in iterative process of improving modelled system. 

Common and representative method of that algorithms family is Maximum Likelihood Expectation 

Maximization (MLEM) method [11].  
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2. FPGA technology in heterogenous computing 

 

2.1. Electronic aspects of FPGA Design 

 

FPGA devices as other digital integrated circuits (IC) are built with analog components, which has 

impact on design process. Logical signals are represented in electronics as proper band values of voltage. 

Bands are set depending on standard, typically voltage level over 90% of supply voltage stands for 

logical “1” and voltage below 10% for logical “0” [12]. FPGAs are fabricated in Complementary Metal-

Oxide Semiconductor (CMOS) technology, which enables power efficiency and very large scale of 

integration (VLSI) [12]. Essential component from which more complex elements are built is a transistor 

[Figure 6] which acts like a switch. 

 

Figure 6 a) transistor symbols, b) example logic gates from transistors 

source: J.-P. Deschamps, G. D. Sutter and E. Cantó, Guide to FPGA Implementation of Arithmetic Functions, Springer, 

2012 

Basic characteristic of electronic component is propagation delay depending on supply voltage and 

temperature. To precisely determine propagation timing there is a distinction between transition from 

low-to-high and from high-to-low levels called rise time and fall time respectively [Figure 7]. 
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Figure 7 Example transition timing scheme 

source: J.-P. Deschamps, G. D. Sutter and E. Cantó, Guide to FPGA Implementation of Arithmetic Functions, Springer, 

2012 

Majority of FPGA designs is synchronous, that means electronic modules are clocked, in other words 

edge-sensitive for clocking signals. Value in a component is sampled only on clock event (rising or 

falling edge), and should be distributed in proper way, that enables synchronous execution of different 

parts of  design. Clocking is a crucial factor in synchronous designs and it causes few aspects for 

consideration.  

Basic storage element in electronic circuit is a register. One can distinguish two types of registers: first 

are edge sensitive flip-flops, second are level sensitive latches. For flip-flops data on its input is sampled 

only on clock event (rising or falling edge) and passed to output. On the other hand, latches are level 

sensitive, and theirs output can change in response to something other than clock signal. Latches are not 

widely used in FPGA technology, because many FPGA vendors do not support its direct hardware 

implementation and attempts to synthesize them could result in a different circuit with not predictable 

behaviour. Flip-flops are common basic form of data storage, in today’s FPGAs D-type flip-flops are 

used (abbr. D-FF) [12]. 

Edge sensitive logic operate properly only when data on its inputs is stable some time before and after 

clock event. Setup time is minimum amount of time for input data to be held stable before clock event. 

Hold time is minimum amount of time for input data to be held stable after clock event. It is also worth 

to define propagation delay as the amount of time after clock event when output of flip-flop becomes 

stable. 

Main vulnerabilities in reference to electronic foundations of clocked designs in FPGA technology are 

[12]: 

• Asynchronous signals 

• Clock domain crossing 
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Other failures in FPGA technology descended from electronic domain are [12]: 

• Metastability is present when design has setup or hold timing violations. That means logic could 

enter quasi-stable state. In that case output is unpredictable and it is considered as failure of 

design. In the end flip-flop settles down in high or low level. 

• Glitch is electrical pulse of short duration, usually unwanted. In general produced by imbalanced 

internal interconnection delays. 

• Spike is electrical, short pulse similar to glitch caused by unwanted oscillations of a signal or 

undesired inductive or capacitive coupling. 

In programmable logic devices except interfacing and communication resources like transceivers, 

converters and input/output buffers it is necessary to describe resources for computing purposes. 

Essentially, in programmable technologies every device is built out of Configurable Logic Blocks (abbr. 

CLB). CLBs differs in their internal structure depending on device family and they are main resource 

for implementing general purpose combinatorial or sequential logic [13]. As a case study Xilinx 

Ultrascale Architecture will be considered. Each Ultrascale CLB contains one slice that can be easily 

connected to others in order to be combined into more complex functions. There are two types of slices 

in Ultrascale architecture: logic (SLICEL) and memory (SLICEM). Both contain 8 6-inputs and 2-

outputs Look-up-tables (LUT) and 16 storage elements that can be configured as D-type flip-flop or 

level-sensitive latch. Slices differ in their internal structure and interconnects [13]. Different slices 

proportions in chips infer feasibility of target application. Basically, LUT element works as a truth table, 

set of inputs results proper output described in so called LUT-mask. On the other hand storage element 

preserve values. In reference to SLICEL its resources are mainly utilized in implementation of 

combinational logic, arithmetic function or signal selection infrastructure (i.e. multiplexer). On the other 

hand SLICEM enables advance in implementing LUT distributed memories.  

Except general purpose logic, designers should leverage other resources. In Ultrascale architectures for 

on-chip memory resources designers are encouraged to use Block RAM (BRAM) or UltraRAM 

(URAM) memories except distributed LUT memories [14]. The BRAM in Ultrascale architecture stores 

up to 36 kb of data. It can be configured as either two independent 18 kb RAMs, or one 36 kb RAM. 

BRAMs provide variety of configuration features, but as a crucial factor they enable efficient on-chip 

storage of moderate amount of data and are useful in interfacing between different clock domains, 

because write interface and read interface can work on different clocking signals. In contrast the single 

URAM resource can store 288 kb and have dedicated routing resource for cascade connection between 

multiple blocks. Moreover URAM can cascade inputs and outputs through different clock regions, for 

BRAM inputs cascade is done with external logic resources and BRAMs cannot be cascaded through 

different clock regions [6]. Another important resource in Ultrascale Architecture are Digital Signal 

Processing Blocks (DSP48E2) [15]. 
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Figure 8 DSP48E2 functional scheme [15] 

It supports independent function like: 

• Multiply:       𝑃 ≔  𝐴 ∗ 𝐵 

• Multiply accumulate (MACC):     𝐴𝐶𝐶 ≔  𝐴 ∗ 𝐵 +  𝐴𝐶𝐶  

• Multiply add:       𝑃 ≔  𝐴 ∗ 𝐵 +  𝐶  

• Four input add:      𝑃 ≔  𝐴 +  𝐵 +  𝐶 +  𝐷  

• Bitwise logic functions:     𝑖. 𝑒.  𝑃 ≔  𝐴 ∧ 𝐵 

• Pattern detector and more 

 

Architecture supports cascading multiple DSP48E2 slices for complex arithmetic or Digital Signal 

Processing (abbr. DSP) without utilizing general purpose logic. 
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2.2. Design and development flow in heterogeneous reconfigurable systems 

 

Nowadays heterogeneous systems enable dedicated application to use various hardware resources to 

achieve best performance. Complete system in same silicon chip with computing resources, interfacing 

resources (like analog to digital converters) and its interconnect is described as System-on-chip (SoC). 

Unit of logic or electronic design layout is described as Intellectual Property core (IP core), when it is 

intellectual property of one party. In reference to programmable devices one can diverse components 

deployed as Soft IP cores or Hard IP cores. Soft IP cores can be implemented with general purpose 

hardware resources and are fabrication/implementation technology independent. On the other hand Hard 

IP cores represent hardware components, embedded within FPGA device, mostly used in mixed and 

analog signal designs (i.e. ADC, SERDES etc.). It enables keeping designs confidential and distributing 

them as product ready to use with no insights on their internal implementations. Moreover a lot of digital 

designs IP cores are without restraint on implementation technologies (Soft IP), so with later 

configuration they can be deployed as IC in semiconductor or configuration in FPGA technology. Basic 

FPGA design flow can be divided into steps and for Xilinx FPGAs can be presented on following scheme 

[Figure 9]. 

 

Figure 9 Generic FPGA design flow 

In principle FPGA design flows are vendor independent and as a starting point Design Entry states for 

adding and developing all project source files. Next step is Design Synthesis, where HDL codes and 

other project sources are checked for syntax and possible violations, then translated to digital electronics 

description with proper connections made of hardware primitives (usually called netlist). After that,  

comes the implementation which is about migrating description to physically available on-chip 

resources. On this stage some optimizations can be done, because resources can be reused in some cases, 
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moreover some functionalities can be implemented with various available resources (i.e. adder can be 

realized with LUT or DSP block). At that time also placement and routing of resources is performed. 

Internal algorithms in FPGA programming toolchain choose viable resources and connections between 

them in reference to planned strategy and design constraints. Finally design is ready to be saved in proper 

format for chip programming.  

Complementary to design development verification environment is being developed. Aim of verification 

is to check and warrant bug free designs in their development process and in later deployments. 

Fundamental rule of verifying components is to check output results, with reference assumptions, as a 

response to proper stimulus data on its inputs. In behavioural simulation, design is begin verified at the 

logic level. During implementation, signal propagation and routing delays are calculated basing on 

generated netlist and selected device. Functional simulation stands for verifying design with delays 

introduced by the implementation process. Adding delays and timing information to design makes it 

behave more like real world design deployed on hardware. 

In heterogeneous system, except programmable resources there are available other powerful processing 

units. As an example Xilinx MPSoC contains Application Processing Unit, Real-Time Processing Unit 

and Graphic Processing Unit except programmable logic and other specialized circuits [16]. In case of 

designing system architecture it is necessarily important to properly partition functionality to run on 

programmable logic and fixed silicon structures for best performance and resource utilization. 

 

Figure 10 Zynq Ultrascale+ EG device family scheme [17] 
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As seen on scheme [Figure 10 Zynq Ultrascale+ EG device family scheme  heterogeneous system can 

contain wide range of resources. Considering dedicated application, architect should start with grabbing 

idea of data rates, calculations complexity and real-time regimes for particular features. Then based on 

proper assumptions, one can start product development. Software and Hardware project activities can 

run in parallel but to make it efficient it is worth to design programming model, make assumptions on 

protocols, build test and verification environment. 

Programming model is an abstraction of the underlying computer system that allows for the expression 

of both algorithms and data structures. It can be implemented with various programming languages, 

moreover it maps and leverages utilization of hardware resources in accord with requirements. 

For designed programming model a software can be developed without hardware up and running, but 

every change in programming model should be consulted with hardware and software designers. As an 

example of programming model one can consider Message Passing Interface (MPI), where one or more 

processes communicate by calling library routines to send and receive messages to other processes.  

In reference to protocols, as a set of rules in communication systems, it is considered as a good practice 

to use standardized ones, for simplified connection with external subsystems and components. 

 

2.3. Verification and testing 

 

FPGAs and SoCs systems grow in resources and become more sophisticated that brings challenges in 

design processes but also for testing and verification. Moreover, in nowadays FPGA project teams it is 

quite common to work with Verification Engineers, whose work is it to develop simulation 

environments for examination of design reliability. Except design complexity, IP reuse drives growth in 

verification related topics and project activities. 

Verification is proving or checking if assumed functions work correctly. In reference to electronics it 

enables finding bugs and faults in simulation, which iteration is much faster and cheaper than preparation 

of a physical test/experimental set-up. There is a wide range of possible verification environment 

development technologies. Basically testbench creation is about applying stimulus for inputs of tested 

design and checking its output for compliance with assumed behaviour. 

As an representative example one can consider verification environment developed with SystemVerilog 

(SV) and Universal Verification Methodology (UVM) [18]. One of the main advantages of selecting SV 

is that it combines HDL language with Hardware Verification Language (HVL) in one programming 

language semantic. Constructs and techniques like classes, inheritance, dynamic objects known in 
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Object-oriented-programming (OOP) can be used for creating advanced and reusable verification 

environment. UVM library contains hundreds of classes to advance development of digital and mixed 

signal verification. It was founded by few semiconductor industry leading companies, they merge and 

update their own libraries into one bigger and universal. 

Fundamental structure of example UVM testbench can be seen on scheme [Figure 11]. 

 

Figure 11 Fundamental structure of Universal Verification Methodology testbench 

testcase stands for object of user-defined testcase class, tests can be selected in simulation run command 

by using command line argument UVM_TESTNAME. Testcase class extends uvm_test class, which is 

virtual base class for the user-defined tests. In particular test case one can define environments for 

advanced parameterization of test in different aspects. In reference to environments UVM provides 

uvm_env virtual class for user-defined environments inheritance. In environments one can instantiate 

agent connected to scoreboard and Device-Under-Test (DUT) also called Design-Under-Verification 

(DUV). Their essential work is to drive stimulus via interface to DUT design and monitor outputs 

passing them to scoreboard for later comparison and analysis. 

Essential assumption on UVM simulation execution is phasing [Figure 12].  

 

Figure 12 UVM Phasing scheme 
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Phasing is classified in three categories [18]:  

• Build Phases: They are for building and connecting related activities. Objects creation, factory 

registrations, references passing between objects for later test execution. 

• Run Phases: Setting configuration and running simulation. This is the only place for simulation 

time lined activities like applying stimulus and gathering output data from interfaces. 

• Clean up Phases: Clean up and reporting duties for executed simulation are implemented here. 

System Verilog provides two possible manners for implementing functionalities methods as: tasks and 

functions. Main difference between them is that tasks can contain timing control structures unlike 

functions, which are executed in ‘zero time’. Moreover tasks can call other tasks and functions. Phasing 

is realized with inheritance from uvm classes and overwriting proper phase methods in user-defined 

classes. 

Testing in terms of FPGA and digital circuits design is mostly considered as laboratory testing. This 

approach is suitable for mature projects or IPs, where common bugs are identified and fixed on 

simulation of verification environment level. It is because of that, this sort of testing can be costly and 

time consuming. Some of set-ups can require specialized laboratory equipment. Moreover, single design 

build for biggest FPGA chips can take a dozen hours. Test scenarios should be quite complex and 

representative for example usage of application. They are executed on physical hardware platform for 

compliance check with assumed specification. Adapting Shift-left testing paradigm, which is basically 

about “testing early and often” it is beneficial to start testing activities early, but with properly simulated 

designs. One of essential tool for tests of digital electronic, except oscilloscope and signal generator, is 

Logic Analyzer (LA). This device probes signal and enables later analysis of its archived values. Main 

disadvantage of that approach is no insights on internal signals, only external pins can by connected to 

LA. What is more, they are not supporting advanced triggering options for signal samples archiving. 

FPGA Vendors understand needs for hardware tests and provide IP cores for that purposes. Most 

common are Integrated Logic Analyzer (ILA) from Xilinx [19] and SignalTap Logic Analyzer from 

Intel [20]. As a part of IDEs or toolchains for FPGA design that IP cores provide advanced triggering 

features and insights to internal signals in design. Fact worth considering is fact that ILA and SignalTap 

utilize on-chip resources. That can influence implementation process and in worst case brings timing 

issues and shortage of resources. 
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3. Digital J-PET scanner 

 

3.1. Detector description and nature of signals 

 

Digital J-PET scanner is a whole-body Time of Flight novel tomography developed by J-PET group led 

by Professor Pawel Moskal at the Jagiellonian University in Kraków. Scanner mechanical structure is 

designed and manufactured to enable stable and proper fixing of twenty four modules [Figure 14]. Each 

module contains thirteen scintillation strips arranged one next to another. To each scintillator strip four 

photomultipliers (PMT) are connected. 

 

Figure 13 Detecting module of Digital J-PET scanner 

Modular design enables custom detector set-ups. Moreover, compact components improve detector 

mobility. Current ring configuration consist of 24 modules and the inside diameter of detector is around 

74 cm. Each module detection area is 46 cm long and 9 cm wide [Figure 13]. Whole detector set-up 

weigh around 100 kilograms. 

  

Figure 14 Whole barrel Digital J-PET set-up 

source: A. Heczko CAD model  
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3.2. System architecture  

 

Digital J-PET data acquisition system has hierarchical structure. In bottom-up approach of its 

characterization first step will be receiving data from FEE readout boards dealing with physical 

phenomena.  

 

Figure 15 Digital J-PET Conceptual system architecture scheme 

Measurement in system goes from FEE modules through Concentrator to the Controller as marked on 

scheme [Figure 15] with blue arrows. Control communication between Concentrator and its FEEs is 

bidirectional, white bold arrows indicate that on architecture scheme. Similar, bidirectional 

communication is between Controller and Concentrators denoted with black arrows. That in result 

enables Controller to communicate with each FEEs bidirectionally. It is possible to use that 

infrastructure to communicate components with each other. From a FEE board digital data is sent via 

optical link to data concentrator board [Figure 15]. Each concentrator board is connected to 6 modules, 

each having 2 FEEs. In total 12 Front-End boards are connected to each one of 4 Concentrator boards 

in the system [Figure 15]. That setup enables module-wise processing features to be implemented for 

monitoring and filtering towards data reduction and later visualization. It is also possible to transmit 

data to FEE for calibration and control purposes. Each Concentrator board is connected to the Controller 

board, which gathers data from the entire detector and enables advanced processing (i.e. Real-Time 

visualization or image reconstruction) and control. From Controller it is possible to communicate with 

every FEE component in system simply by writing or reading proper memory mapped addresses.  

When gamma quanta from annihilation hits scintillator material it may (with possible to estimate 

probability) emit light which is registered by photomultipliers on opposite ends of a strip. Depending on 

place where the hit was received in strip arrival time of light differs. Knowing light transmission speed 

dependencies in scintillator, place of light emission can be obtained. PMT converts received light into 
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electrical pulse. On each PMT voltage output is distributed to two analog conditioning circuits for later 

input on LVDS input buffers in Xilinx Artix-7 FPGA chip. LVDS buffer can act like a comparators, 

when on one of its inputs threshold voltage is applied and on other input signal. Threshold values are 

determined and applied in calibration procedure, for each PMT output two thresholds are provided. 

Concentrator component is implemented on Xilinx Virtex Ultrascale FPGA VCU108 board [Figure 16]. 

Main advantage of VCU108 is wide range of connectors for multi gigabit transceivers, that allows fast 

data transmission on many links simultaneously. Moreover Virtex Ultrascale chip contains over 1 

million of FF, half of million LUTs and around 60 Mb on-chip memory. That amount of resources 

enables implementation of complex and parallel processing systems with high-speed communication. 

 

Figure 16 VCU108 board [21] 

Controller board functionality is developed on Xilinx Zynq UltraScale+ MPSoC ZCU102 [Figure 17]. 

It contains heterogenous chip architecture with quad-core Arm® Cortex®-A53, dual-core Cortex-R5F 

real-time processors and Mali™-400 MP2 graphics processing unit. All combined with programmable 

logic resources. As distinct from VCU108, ZCU102 contains 2520 DSP blocks and 274080 LUTs. 

Multi-Processor System enables development of complex software applications for bare metal or 

operating system layer. That set of resources matches implementation requirements of control, 

visualization and advanced data processing techniques. 
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Figure 17 Controller board [22] 

 

3.3. Readout procedure  

 

Digital J-PET uses continuous triggered readout technique to acquire and transmit data from detector to 

later processing stages. Continuous digitization of analog signals fills buffers, for later transmission 

when triggered. It is worth to count buffer sizes, radiation intensity and frequency of triggering signal 

to assure no data loss in case of buffers overflow. Every pulse is described by leading and trailing edge. 

They are measured with TDC, which output is placed into buffer. Buffered TDC words are in custom 

binary data format [Figure 18]. 

 

Figure 18 TDC word in Digital J-PET 
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Edge is matched with single bit value, one stands for rising edge and zero denotes falling edge. Data is 

measured on two voltage levels called thresholds and from 52 photomultipliers, 4 on each scintillator 

strip. That results in 104 TDC channels, so channel number value maps each threshold on each 

photomultiplier on one side of tomographic module. Coarse time and fine time stands for time 

measurement by counting on 300 MHz clock and TDC-based precise timing information.  

Periodic triggering is defined to work with 50 kHz frequency. That means for every timeslot, which in 

that case takes 20 𝜇𝑠, transmission is occurs. All boards are triggered simultaneously. Transaction header 

contains 64 bits [Figure 19]. Data width is 32 bits, so first two words stands for board id and amount of 

TDC word in transaction. Next two words stands for transaction number and error flags. 

 

Figure 19 FEE to Concentrator transmission header 

Information about board id and amount of data can be used for checking if all data that was sent is 

properly received. Example usage of event number information and error flags is checking if every 

transaction that is triggered occurs. 

3.4. Data processing stages  

 

First stage in data pipeline is the reception of digitized signals from FEE. Because of using TDC, data 

consists of words containing timing information. Amount of generated data words depends on 

calibration parameters and grows with radiation source activity. After transmission from FEE to the 

Concentrator, data is crossing time domains from transmission clock to processing clock for later 

histogram building. Basically it is useful to count data from each TDC channel, so the user will be able 

to see system behaviour before any processing and filtering. As a next step, data from time slot is split 

into time bins depending on coarse time value for parallel processing [Figure 20]. 
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Figure 20 Time bins in time slot split with coincidence finding execution scheme 

  

Time bin size can be parametrized in natural power of 2 values. In example, for 20 𝜇𝑠 triggering period 

coarse time max value on 300 MHz clock is 𝑐𝑚 = 6006. Assume time bin size of 𝑡𝑠 =  128 coarse time 

counter unit. To the first time bin all TDC words with coarse time is in range 〈0, 127〉 will be addressed. 

In second time bin words with coarse time in range 〈128, 255〉 will be placed and so on. Moreover, that 

parameters set results in ⌈𝑐𝑚/𝑡𝑠 ⌉ time bins. 

For each time bin coincidence finding is performed with later geometrical position in module 

calculation. Then, the data is gathered to single FIFO module and ready for transmission to the 

Controller for further advanced processing. Filtered data from the whole detector is duplicated and sent 

to storage subsystem and a data path that performs LOR extraction modules. On obtained LORs 

reconstruction algorithms can be executed with hardware acceleration and the output can be visualized 

directly on display from Controller board. 
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4. Implementation 

 

4.1. Development environment 

 

Implementation of data pre-processing and image reconstruction kernel is targeted for FPGA 

technology. Therefore essential tool in development process is Vivado supporting Xilinx programmable 

devices. It combines all elements of FPGA design flow in Integrated Development Environment (IDE). 

One of its feature is representing design entry files in form of Block Design [Figure 21].  

 

Figure 21 Block design containing HLS, RTL and IP Core components 

Block Design enables connection of FPGA design components via graphical user interface (GUI). 

Moreover, it supports design automation features like: 

• Connection Automation: After running connection automation Vivado opens window with 

available nets and interfaces for connection. Each connection can be customized or connected 

with default configuration. 

• Design Validation: Basic checker on resets, clocks and unconnected pins is executed by running 

this feature. 

• GUI Block parametrization: For wide range of IP cores GUI configuration and parametrization 

is supported  in Vivado from Block Design. 

Describing hardware targeting FPGA technology can be performed on few levels of abstraction. In 

Verilog/SystemVerilog nomenclature the lowest level of circuit modelling is switch level modelling, 

where designer works with abstractions matching transistors. Modelling on higher level of abstraction 

is described as gate-level, where digital circuits are built from logic gates. Next modelling level, which 
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hides logic gate implementation details is called Register-Transfer Level (RTL). RTL models digital 

circuits in terms of data flow between registers and logical operation. More abstract approach than RTL 

is Transaction Level Modelling (TLM), where communication details among system components are 

separated from components implementation details. RTL is common choice in development of 

synthesizable circuits for FPGA technology, because it combines low-level control on design with 

moderate abstraction for FPGA specific implementation details. 

High Level Synthesis (HLS) is a process of generating digital electronic designs for FPGA technology 

from common programming language code, mostly C/C++. Digital circuit generation from 

programming language is controlled with compiler pragma directives and coding styles. In reference to 

Vivado HLS main aspects of pragma control on generated logic contains [23]: 

• Interface synthesis:  Defining interface to generated logic component. 

• Function inlining: Handling instantiations and reusage of generated logic. 

• Kernel optimization: Wide variety of inferring on particular resource utilization,  operation 

chains, latency and resets. 

• Pipelining: Control on pipelining and data flow in design.  

• Loop unrolling and optimization: Control on dependence between loop iterations, handling 

iteration execution flow. 

• Array optimization: Control arrays storage in memories in reference to enable proper manner 

of access and better memory utilization. 

Except pragmas, generated logic is influenced by coding styles. Usage of proper data types, constant 

loop bounds, no dynamic arrays are few good practices for HLS projects development. Moreover Vivado 

HLS contains libraries supporting math operations, linear algebra, video processing, streaming 

applications and IP cores [23]. 

 

4.2. Flow and pre-processing of data for Line-of-response extraction 

 

The first stage of qualifying raw data from detector system as acceptable is to pair output streams from 

both sides of scintillator strips. When time difference between pulses from both sides on a same 

scintillator is below certain time boundary, then that pair of pulses is considered as coincidence. Time 

boundary is determined by the speed of light in scintillator material and its length.  

At first, pair of two streams from both sides of scanner module is passed through scalers to count samples 

per TDC channel in transaction for monitoring purposes.  
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Figure 22 Module-wise data processing architecture scheme 

Later data in transaction is split up in time bins with parametrized size covering whole time boundary 

for a single transaction [Figure 22] (single timeslot). In each time bin coincidence finding is performed 

in parallel by comparing data from one side with that from the other side of scanner module. In case 

when a pair has time difference of pulse start below boundary and is from the same scintillator strip, it 

is passed to output as coincidence. Extracted coincidence pairs are gathered to one FIFO for later 

transmission to the Controller board. At the same time coincidence results are also passed to calculation 

of module-wise position. With time difference value, location along scintillator is estimated and based 

on channel value position on width is determined. Results of positions are also gathered to FIFO module.  

Scalers are developed in Vivado HLS, because it is a suitable tool to generate dataflow processing 

components and registered values will be read by on-chip processor with AXI interface. HLS easily 

generates proper interface handling on RTL side with histogramization functionality. Split up in time 

bins is developed in SystemVerilog and it contains a lot of bit-level operations that should be precisely 

described for best performance and proper timings. Moreover in this module data is transferred to 

BRAMs with CDC on multibit data bus for later read operations by coincidence extraction stage. Signal 

“done” of split up operation, which triggers coincidence finders also crosses clock domains. Working 

on RTL level with non-standard interfacing signalling handshakes is easier to handle and debug than 

using methods for code generation. Coincidence finding modules are developed in HLS. They read data 

from BRAM and compare each possible pair combination in time bin. That is essentially a comparison 

operation to gather coincidences. Module-wise position calculation results in pair of two numbers. First 

number stands for position on Z axis, which goes along scintillator with its origin on A side of scanner 

module. Second number stands for position on X axis, it corresponds to scintillator order, but described 

in distance measure [Figure 23].  
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Figure 23 Axis position in reference to module geometry 

Module-wise position calculation component basically contains multiplication of scaled time difference 

with speed of light in scintillator and scanner module geometry mapping for achieving results in 

centimetres. 

4.3. Real-time image reconstruction approach 

 

From a variety of image reconstruction algorithms as an evaluation example of real-time image 

reconstruction approach 2D Filtered Backprojection method was selected. It is a common, non-iterative 

method for cross sectional image reconstruction. In reference to hardware implementation, FBP internal 

calculations are mostly digital signal processing techniques that goes well with FPGA architectures. 

That premise, next to essential importance of FBP in image reconstruction studies, is the main reason 

for its hardware acceleration research. 

Algorithm implementation input is defined as a list of LORs. As 2 dimensional case is considered LORs 

are mapped on detector ring plane. In 3 dimensional case smallest element in reconstructed image is 

called a voxel, in 2 dimensions it is a pixel. Pixel size is inferred by discretization of created sinogram. 

Bins stands for discretization points, and should be related to the input data and required quality. In 

general, the more bins, the better resolution. Measurement data from detector is discrete in terms of 

LORs positions. On detector ring plane LORs can arise only between detecting elements, precisely, 

scintillator strips. That infers some limitations on bins count preventing oversampling. 

From FBP flow accelerated kernel was selected as stages seen on scheme [Figure 24] 
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Figure 24 FBP hardware acceleration kernel scheme 

 

FBP reconstruction acceleration kernel takes sinogram data as input. Input normalization is required for 

later calculation, because input data is bigger than FFT fixed-point data type bounds. Fast Fourier 

Transform is performed by the FFT IP Core from Xilinx, which works on fixed point data type 𝑄1.15. 

That is 1 bit for signed integer part and 15 bits for fractional part. Every row in sinogram input array 

corresponds to different rays of fixed angle value in projections. Normalization factor is obtained by 

summing up all sinogram taking square root of given sum. Later every value in sinogram is divided by 

the normalization factor. That formula was introduced empirically as a starting point for later data types 

improvements. It does not result in overflows and preserve large information loss in floating to fixed 

point conversion. Collaterally sinogram input is buffered to enable pipelined calculations of FFT. 

Sinogram buffer is declared with synthesis pragma array_reshape that places data in BRAMs with proper 

split, because from each BRAM only one operation of read or write can be executed. Results of FFT are 

multiplied with externally passed filter mask. There is no need to calculate filter masks in programmable 

logic, because it is more suitable to prepare them with proper libraries and frameworks earlier in software 

and instantiate in logic as a Look-Up-Table. Filtering results are passed to the IFFT core from Xilinx, 

which works in similar manner to FFT core. Next, element-wise absolute value of filtered sinogram 

results is taken and data is transmitted to the output buffer to enable IFFT core pipelining.  
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5. Results 

 

5.1. Data pre-processing 

 

Overall test and analysis environment consists of software execution, running RTL simulation and 

testing on hardware. Software execution contains reference models and numerical calculations results 

analysis. Moreover data provided by the software execution of reference models is compared with RTL 

simulation results and hardware tests products. To correctly run data pre-processing pipeline it is 

necessarily important to provide inputs relevant to physical process, measurement and transmission 

method. Input data generation for data pre-processing is structured in three components. First one is the 

generation of hits locations within detector. Locations are related to position on module plane on X and 

Z axis. Positions are generated with normal distribution on both axis. This process can be interpreted in 

terms of real world application as estimation of point source placement on module. Higher number of 

hits will be registered in position of point source the larger distance from source, smaller amount of hits 

will be received. Data is generated for both thresholds and transformed into TDC word format. As a 

result, every geometrical point on module should be represented by two times on both thresholds [Figure 

25]. 

 

Figure 25 Position on module restored from timestamped data and inital location data 

Second component is the acquisition of hits by the detecting system. Positions that match module size 

boundaries are registered including speed of light in scintillator and two thresholds. Appropriate delays 

are applied. Later, hits saved in a form of time differences are distributed over timeline. It means that 

hit occurrence in time slot can be connected with specified time bins [Figure 26].  
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Figure 26 Example time bins distribution with same randomization on both sides 

Last component in the input data generator is the formation of transmission packets. Time differences 

on appropriate TDC channels are encoded in TDC words format. Later noisy data is introduced by 

removing one element from coincidence pairs. Finally data is shuffled  and formed into transmission 

packet with header. Prepared transmission data is passed to the input of data processing pipeline. 

Transmitted data split in time bins is passed to HLS functions. First coincidence finding is executed, 

later module-wise positions are calculated. HLS data processing pipeline outcome is loaded in 

interactive script for comparison with generated coincidence pairs.  

After software model correctness analysis, RTL simulation is executed with same generated input data. 

Outcome from RTL simulation is checked for compliance with HLS execution results. To guarantee 

assumed behaviour hardware tests are performed with the same generated input data. To perform 

hardware tests design was migrated to Zynq SoC chip with processor and FPGA. From the processor 

data was passed to BRAM, and then transmitted to data pre-processing pipeline. Results from the 

coincidence finding and module-wise calculations are gathered in FIFOs and read back by the processor 

for comparison with the reference one. When failure occurs proper message with invalid data is send to 

display on host computer via Universal Asynchronous Receiver-Transmitter (UART). 

 

5.2. Image reconstruction 

Reconstruction of image in PET tomography is based on LORs. From coincidences in terms of hit 

receival on a single detector, Line-Of-Responses can be obtained by considering the entire detecting 

setup and time coincidences between reconstructed module-wise hit positions. Image reconstruction can 

be separated in two parts. First one is the construction of a sinogram in an pipelined, event by event 

manner, by processing LORs one after the other. Second part is the execution of the computing kernel. 

When sinogram is filled with satisfactory amount of LORs, image reconstruction can be launched 

[Figure 27].  
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Figure 27 Example sinogram 

FFT is performed on sinogram, resulting with a plot containing frequency information. Different scales 

are present because FFT IP Core input data type in range from -1 to 1 [Figure 28]. 

 

Figure 28 FFT of sinogram from HLS and Python reference model 

Later filtering is performed by multiplication in frequency domain. As an example, RamLak filter is 

selected with cut-off frequency of 0.9 .  
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Figure 29 RamLak filter mask for cut-off  frequency= 0.9 

Filtering with cut-off frequency of 0.9 acts like a band pass filter, where low frequencies are attenuated 

and highest removed [Figure 30]. Presented HLS example FFT module is configured to operate on 

normalized values in range from -1 to 1, because it uses 16 bit fixed-point data type with 1 integer bit 

and 15 fractional bits. That results in not bit exact results with different scales on plots. 

 

Figure 30 Sinograms in frequency domain after filtering 

Later IFFT is performed, which results in a recovered sinogram [Figure 31]. After filtering, moderate 

and high frequencies are amplified. 
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Figure 31 Filtered sinograms from FBP method 

Parallelization of iterative calculations is essentially realized by unrolling loops. If there are no 

dependencies between iterations of loop it is possible to run them in parallel. Unroll factor corresponds 

to the number of iterations that are executed in parallel. It is presented on [Figure 32], where one can 

recognize 4 instances of fft_top function, all executed at the same moment. By increasing unroll factor 

latency is decreased and resource utilization is assumed to grow. 

 

Figure 32 Loop unroll by factor of 4 for fft_top, filter and fft_top consecutive operations. 

Calculation kernel can be configured for fixed-point or floating-point data type implementation. For 

main types of operations used in kernel like addition and multiplication fixed-point hardware 

implementation requires less resources what derives faster clocking. Main disadvantage of fixed-point 

data type in terms of calculation kernel is small range of possible values. That corresponds to the need 

for data normalization to prevent overflows. Floating-point data type can store data from higher range 
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of values, but numerical operations like additions and multiplications are in general more resource 

consuming.  

Analysis of kernel parallelization for fixed-point configuration is presented for 1, 2, 4, 8 unroll factors 

with pre-processing normalization [Table 1]. Presented values consist of sequential processes for 

reading input sinogram and writing generated sinogram to the output and parallelized computations in 

between. The sequential manner of input and output is due to the type of the interface, which allows to 

read or write single bin per clock cycle and this dominates the overall latency and interval measurements. 

That is why increasing unroll factor does not result in proportional reduction of latency. 

Unroll factor Latency [𝑚𝑠] Interval [𝑚𝑠] 

1 4.07 4.07 

2 3.59 3.59 

4 3.35 3.35 

8 3.26 3.26 

Table 1 Latency and interval in fixed point implementation 

Normalization is based on dividing each element by maximum value in row, that corresponds to different 

distances for fixed theta. That normalization provides values in range from -1 to 1 suitable for 

configuration using fixed-point data type. Latency is the value that depends on conditional statement in 

normalization. Moreover normalization in this case consumes resources and additional clock cycles. It 

also introduces dependency, because data from input must be firstly normalized for later calculations. 
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That is why unroll can be easily performed only from stage after normalization. Flow of data in that 

manner of normalizing does not allow to introduce pipelining. 

On the other hand floating-point configuration does not require normalization. Input data can be buffered 

and passed to later unrolled loop of kernel calculations. Without normalization the kernel can fully profit 

from the parallelization of its calculations, without being biased by sequential computations. 

  

Figure 33 Floating point implementation calculations timing 

Moreover that manner of flow enables pipelining using dataflow compiler pragma. Overall performance 

can benefit from dataflow because the calculations can occur while input and output data is being 

transmitted. On example of unroll factor 4 configuration latencies and interval durations are as follows: 

Before dataflow pragma optimization After dataflow pragma optimization 

Latency  

 [𝑚𝑠] 

Interval [𝑚𝑠] Latency [𝑚𝑠] Interval [𝑚𝑠] 

0.65 0.65 0.57 0.24 

Table 2 Data flow pragma optimization comparison 

With dataflow optimization first results will be delivered after 0.57 [ms] and after that, every kernel 

execution in pipelined manner will provide results every 0.24 [ms]. In terms of reconstruction 0.24 [ms] 

corresponds to 4166.6 Hz refresh rate. These results indicate time margin for non-kernel data processing 

to reconstruct image in pipeline with low-latencies. 

Resource utilization in reference to increasing unroll factor has a growing trend. BRAM Memory 

resources are slowly growing. Fixed-point configuration utilize around 78% of them, for floating-point 
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it is 71.5% of total BRAM memory on-chip resources. Flip-flops tend to scale linearly and for unroll 

factor of 8 FF utilization is around 10%. Most crucial resources in kernel are LUTs, because FFT cores 

are configured to utilize them for calculations. 

 

Figure 34 Resource utilization (LUT) plot 

Prepared kernel for both configurations and considered unroll factor values will fit into Controller Board 

chip resources. Except presented resources only few DSP blocks (out of 2520 available on chip) are 

currently utilized kernel. 

 

 

  

0

10

20

30

40

50

60

1 2 4 8

%

Unroll factor

Resource utilization (LUT)

floating-point

fixed-point



                                                                 

 

41 
 

6. Conclusions 

 

6.1. Development considerations and problems occurred 

In modern FPGA work flow designers are encouraged to use various techniques from software 

development and electronic design automation background to deliver complex digital components 

faster and in a more flexible way. This trend is supported by new tools, libraries and frameworks 

for software applications to better match the hardware or even generate hardware description based 

on application source code. Vivado HLS is an example of using software development techniques 

in hardware design process. Functions targeted for hardware acceleration can be executed in the 

same way as software functions, which enables regular programming test and debug features. For 

generated logic tests, Vivado HLS provides co-simulation to confirm that RTL matches software 

behaviour. C/C++ code that executes synthesised HLS function is translated to RTL testbench and 

run in RTL simulation manner.  

 

6.2. Future plans 

Next steps of project development activities can be classified in two categories. First is connected 

with improving data processing for LOR extraction and FBP optimizations. Second category is 

related to research on other methods of image reconstruction.  

To extract LORs from paired coincidence on both sides of scintillator there is a need for appropriate 

detector geometry mapping with registered hit channel information from TDC words. Based on that, 

coincidence in terms of positron decay can be obtained regarding hit receival on two detectors in 

short time period. That will result in a pair of two points representing a LOR, with additional 

information on Time of Flight. LORs should update the sinogram one by one for later image 

reconstruction. In FBP implementation FFT and IFFT IP cores can be configured in few other ways. 

They can work with different data types and utilize resources in different manner. That can possibly 

result in elimination of input normalization and enabling greater flexibility in resource utilization 

management. 

Regarding other methods of image reconstruction, it is worth to consider Time of Flight FBP (TOF 

FBP) [24]. It provides better reconstruction quality than classical FBP. Moreover, in TOF FBP 

sinogram filtering, which hardware implementation is presented in this work, is extensively used. 

Other interesting approach to image reconstruction methods is using Kernel Density Estimation 

(KDE) [25]. KDE based methods can omit filtering by directly working in projections domain. Main 

idea in these methods is to enhance ROR information with kernel operator and accumulate outcome. 

That in result will reconstruct image.  
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6.3. Summary 

The aim of this work, which was to explore hardware acceleration techniques for tomographic data 

processing and visualization, is achieved. Data processing was developed and tested for coincidence 

finding and module-wise position determination. In reference to visualization component of this work, 

FBP method was evaluated for hardware acceleration.  

Implementation details are presented in 4. Chapter, where design of module-wise data processing and 

image reconstruction approach is described. Delivered data processing components provide insight to 

data pipeline on three stages: counting data after receival, finding coincidences and hit positions 

calculations within module. FBP sinogram filtering kernel determines feasible way of algorithm 

acceleration prototyping.  

Nowadays image reconstruction techniques in PET tomography are in general accelerated with general 

purpose processing units. Hardware implementation of reconstruction and data pipeline can possibly 

enable wide range of new application, where real-time regime, compact design and energy efficiency 

are crucial factors. Whole project including results from 5. Chapter confirms suitability of using FPGA 

technology for data processing and image reconstruction acceleration.   
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