
Conclusion

v In this work, we demonstrated positronium lifetime image reconstruction method using 
penalized MLEM

v The preliminary validation of the reconstruction method has been conducted with the real 
data measured using NEMA IQ phantom placed inside Modular J-PET

v We observed that the rate constant (lambda) images are of better quality
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Siddon ray tracing method [6] is used as projector to give the contribution from the voxels and 
Maximum Likelihood expectation maximization (MLEM) is used to update the image iteratively 
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𝑖𝑚𝑎𝑔𝑒!" = value of reconstructed image at the voxel 
j for the k-th iteration,
k – iteration number,
j – voxel number,
i – the event number,
𝐶%! – coefficient giving the probability of event i is 
result of an emission from voxel j 
N – Normalization

The MLEM reconstruction is given as [7]:

For describing the ΔT time difference, we have considered the exponential distribution:
𝑓(𝜏; 𝜆) = 𝜆𝑒'()   

where 𝜆, rate constant, is the inverse of the lifetime
Closed form equation for the ML estimation is given as [9]:
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𝛽 = regularization term, 𝜂!*= penalty calculated from neighbours of pixel j

Siddon Algorithm [8]
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Image Reconstruction using Scintillator Detectors

Positron Lifetime Imaging
Positronium Lifetime Imaging (PLI) represents an emerging imaging modality which enhances PET capabilities through its ability to map the spatial distribution of mean lifetimes of positronium (Ps) 
atoms [1,2,3]. However, an efficient reconstruction method is extremely crucial to obtain quality lifetime images. The aim of the present study is to develop such a PLI method and to validate it using the
real data. For this purpose, we have used data from the recent experiment carried out with the 44Sc on a NEMA Image Quality phantom using the modular J-PET scanner [4]. The radionuclide 44Sc was
selected for this study, having a clinically suitable half-life (4.04 hours) emitting 1157 keV prompt gamma in 100% cases.

Modular JPET
v Portable with 24 x 13 

plastic scintillators
v Large axial FOV (50 cm)
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Data Analysis using JPET Framework
Distribution of TOT (TOT Hit)[5]

Figure: Range of TOTHit values for
selecting annihilation (Red) and
deexcitation photons (Blue)

Selection criteria for filtering the events:
v Annihilation and prompt selection

based on TOT [5].
v Events with multiplicity ≥ 3
v Time difference between the

annihilation hits
v Angular correlation b/w annihilation

hits
v Scatter Test:
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Experimental Details

T1/2 = 4.04 h

2.94 ps

Transaxial CT scan of the NEMA IQ [4]44Sc decay
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