Towards the Development of an Iterative Algorithm for Positronium Lifetime Imaging Using ⁴⁴Sc with the Modular J-PET

Anand Pandey^{1,2}, Sushil Sharma^{1,2}, Manish Das^{1,2}, Hsin-Hsiung Huang³, Berkin Uluutku³, Giulianno Gasparato³, Chien-Min Kao⁴, Ewa Stepien^{1,2}, Pawel Moskal^{1,2}

¹Faculty of Physics, Astronomy and Applied Computer Science, Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Krakow, Poland

²Centre for Theranostics, Jagiellonian University, Kraków, Poland ³Department of Statistics and Data Science, University of Central Florida, Orlando, USA ⁴Department of Radiology, University of Chicago, Chicago, USA

(Corresponding Author: pandeyanand799@gmail.com)

Positron Lifetime Imaging

Positronium Lifetime Imaging (PLI) represents an emerging imaging modality which enhances PET capabilities through its ability to map the spatial distribution of mean lifetimes of positronium (Ps) atoms [1,2,3]. However, an efficient reconstruction method is extremely crucial to obtain quality lifetime images. The aim of the present study is to develop such a PLI method and to validate it using the real data. For this purpose, we have used data from the recent experiment carried out with the ⁴⁴Sc on a NEMA Image Quality phantom using the modular J-PET scanner [4]. The radionuclide ⁴⁴Sc was selected for this study, having a clinically suitable half-life (4.04 hours) emitting 1157 keV prompt gamma in 100% cases.

Experimental Details

● ¹⁸F ● ⁴⁴Sc

Image Reconstruction using List Mode Data

Siddon ray tracing method [6] is used as projector to give the contribution from the voxels and Maximum Likelihood expectation maximization (MLEM) is used to update the image iteratively Siddon Algorithm [8]

The MLEM reconstruction is given as [7]:

$$image_{j}^{k+1} = \frac{image^{k} * \sum_{i}^{m} C_{ij}}{N * \sum_{j} C_{ij} * image_{j}^{k}}$$

 $image_i^k$ = value of reconstructed image at the voxel j for the k-th iteration,

- k iteration number,
- j voxel number,
- i the event number.
- C_{ij} coefficient giving the probability of event i is result of an emission from voxel j
- N-Normalization

For describing the ΔT time difference, we have considered the exponential distribution: $f(\tau;\lambda) = \lambda e^{-\lambda \tau}$

where λ , rate constant, is the inverse of the lifetime

Closed form equation for the ML estimation is given as [9]:

$$\lambda_{j}^{n+1} = \frac{\sum_{k=1}^{N} w_{kj}^{n}}{\eta_{j}^{n} \beta + \sum_{k=1}^{N} w_{kj}^{n} * \tau_{k}}$$

where w_{kj}^n is given by:

$$w_{kj}^{n} = \frac{C_{ij} \operatorname{image}_{j} \lambda_{j} \exp(-\lambda_{j}^{n} \tau_{k})}{\sum_{l=1}^{J} C_{il} \operatorname{image}_{l} \lambda_{l}^{n} \exp(-\lambda_{l}^{n} \tau_{k})},$$

 β = regularization term, η_i^n = penalty calculated from neighbours of pixel j

References:

- P. Moskal, 2019 IEEE NSS/MIC Conference Proceedings, IEEE Xplore (2019), 1
- P. Moskal et al., IEEE Trans. Radiat. Plasma Med. Sci. (2025), in press
- P. Moskal et al., Science Adv. 10 (2024) eadp2840
- Manish Das et al., arXiv:2506.07230
- Sharma, S. et al. EJNMMI Phys 7, (2020) 39
- R.L. Siddon, Med. Phys. 12 (1985) 252
- H.H. Huang et al., IEEE Trans. Radiat. Plasma Med. Sci. 9 (2025) 478
- Belzunce MA et al., Open Medical Imaging Journal 6 (2012) 108-118
- J. Qi and B. Huang, IEEE Trans. Med. Imaging 41 (2022) 10

Data Analysis using JPET Framework

Annihilation points plot

Selection criteria for filtering the events:

- * Annihilation and prompt selection based on TOT [5].
- \clubsuit Events with multiplicity ≥ 3
- * Time difference between the annihilation hits
- ❖ Angular correlation b/w annihilation hits
- **Scatter Test:**

$$|t_{ann2} - t_{ann1}| - \frac{|r_{ann2} - r_{ann1}|}{c}$$

Preliminary Results

Conclusion

- ❖ In this work, we demonstrated positronium lifetime image reconstruction method using penalized MLEM
- * The preliminary validation of the reconstruction method has been conducted with the real data measured using NEMA IQ phantom placed inside Modular J-PET
- * We observed that the rate constant (lambda) images are of better quality

Acknowledgements

We acknowledge support from the OPUS24+LAP no. 2022/47/I/NZ7/03112(E.S.). We appreciate the support from the National Science Centre of Poland through grant no. 2021/42/A/ST2/00423, 2021/43/B/ST2/02150 and, Polish high-performance computing infrastructure PLGrid(HPC Center: ACK Cyfronet AGH) through grant no. PLG/2024/017688.