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Abstract
In this paper we estimate the time resolution of the J-PET scanner built from 
plastic scintillators. We incorporate the method of signal processing using the 
Tikhonov regularization framework and the kernel density estimation method. 
We obtain simple, closed-form analytical formulae for time resolution. The 
proposed method is validated using signals registered by means of the single 
detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator 
strip. It is shown that the experimental and theoretical results obtained for the 
J-PET scanner equipped with vacuum tube photomultipliers are consistent.
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1. Introduction

The Jagiellonian PET (J-PET) Collaboration has constructed a PET scanner using plastic 
strips to form the barrel (Moskal et al 2011, 2014a). An example of the arrangement of the 
scintillator strips in the J-PET tomograph is shown in figure 1. The proposed setup permits 
the use more than one detection layer, thus increasing the efficiency of γ photon registration 
(Moskal et al 2016). A single detection module consists of a long scintillator strip and a pair 
of photomultipliers attached to opposite ends of the strip. Measurement with such a detector 
results in timestamps from both sides of each scintillator, allowing the timing, position and 
energy information for each γ photon interaction to be extracted. The time and position of the 
γ photon interaction in the scintillator strip is calculated based on times at the left (t(L)) and 
right (t(R)) side of the strip. In the first approximation, the time of interaction may be estimated 
as an arithmetic mean of t(L) and t(R) and the position of interaction along the strip may be 
calculated as (t(L) − t(R))v/2, where v denotes the speed of light signals in the scintillator 
strip. The energy deposited in the scintillator strip may be expressed in terms of the number of 
photoelectrons registered by the photomultipliers and is proportional to the arithmetic mean of 
a number of photoelectrons registered at the left and right sides of the scintillator; the energy 
calibration factor was evaluated in Moskal et al (2014b). Registration of a single event of 
positron emission, used for image reconstruction, is based on the detection of both γ photons 
in two modules in a narrow time window. Therefore, a single image-building event includes 
information about four arrival times of light signals at the left and right ends of the two mod-
ules that register in coincidence. The J-PET detector offers time of flight (TOF) resolution 
competitive with existing solutions (Humm et al 2003, Townsend 2004, Karp et al 2008, Conti 
2009, 2011, Słomka et al 2016), due to the fast plastic scintillators and dedicated electronics 
allowing for sampling in the voltage domain of signals with durations of a few nanoseconds 
(Palka et al 2014).

Recently, a time resolution, defined hereafter as the standard deviation, of about 80 ps has 
been achieved for the registration of γ photons in 30 cm long scintillator strips read out at both 
ends by the vacuum tube photomultipliers (Moskal et al 2014b, Raczynski et al 2014). Such 
resolution results in a coincidence resolving time (CRT) of about 275 ps, as shown in Moskal 
et al (2016). Further improvement in the time resolution requires developments in techniques 
of signal processing and effective parametrizations of detector features. Our estimate of the 
time resolution is based on statistical properties of the signals in plastic scintillators. The dis-
tribution of the time of photon emission followed by its interaction in plastic scintillators was 
described in Moszynski and Bengtson (1977) and Moszynskiand Bengtson (1979). Following 
the time order statistics analysis described, for example, in Seifert et  al (2012), DeGroot 
(1986) and Spanoudaki and Levin (2011), a statistical framework allowing for the analysis of 
photon propagation in the scintillator strips was proposed in Moskal et al (2016).

In this paper we propose a novel approach to calculate the time resolution of the PET 
scanner based on ideas from Tikhonov regularization (Tikhonov 1963, Tikhonov and Arsenin 
1977) and kernel density estimation (Rosenblat 1956, Parzen 1962) methods. We investigate 
the quality of time resolution estimates based on the scheme with a single scintillator strip 
detector introduced in Moskal et al (2014b) and Raczynski et al (2014). The most important 
aspect of evaluating time resolution involves the statistical description of noise. The noise 
in the measured signal comprises two components: statistical fluctuations of the number of 
photoelectrons registered by the photosensor, and the effect of the limited number of samples 
of the signal in the voltage domain. In Raczynski et al (2015a), a formula for calculating the 
signal recovery error was introduced and proved. In this paper we determine the dependence 
of the signal estimation error on the number and shape of registered photoelectron signals. 
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Theoretical results are compared with the experimental resolutions achievable using tradi-
tional readout with vacuum tube photomultipliers. The method is verified by using in the 
calculations the same conditions as in the experiment, as described in Moskal et al (2014b) 
and Raczynski et al (2014).

The J-PET tomograph can be equipped with various types of photomultiplier: vacuum tube 
photomultipliers (standard in the J-PET prototype), silicon photomultipliers or microchan-
nel plate photomultipliers. In case of vacuum tube or silicon photomultipliers, registration 
of the whole signal is not possible, and therefore sampling in the voltage domain using a 
predefined number of voltage levels is needed. The output signal is then recovered using ideas 
from Tikhonov regularization (Tikhonov 1963, Tikhonov and Arsenin 1977) and compressive 
sensing (Candes et al 2006, Donoho 2006) methods. The microchannel plate photomultipli-
ers are the most promising for application in the J-PET instrument due to the possibility of 
direct registration of the timestamp of each single photon. In the experimental study we will 
derive time resolutions of various configurations of the J-PET detector using different types 
of photomultiplier.

2. Materials and methods

In this work we assume that the γ photon interacts in the scintillator strip at time Θ and in 
position x. We consider resolution for these reconstructions.

The time of photon registration at the photomultiplier, referred to as tr, is considered as a 
random variable equal to the sum of three contributing values:

tr = te + tp + td, (1)

where te is the photon emission time, tp is the propagation time of the photon along the 
scintillator strip and td is the photomultiplier transit time. Assuming that the times te, tp, td, 
given in equation (1), are independent random variables with probability density functions 
(pdfs) denoted with fte , ftp , ftd , respectively, the distribution function of tr is given as the 
convolution

Figure 1. Schematic of an example of a three-layer J-PET detector. Each scintillator 
strip is aligned axially and read out at two ends by photomultipliers.

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076
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ftr(t) = ( fte ∗ ftp ∗ ftd)(t), t > 0.

For the ternary plastic scintillators used in the J-PET detector (Saint Gobain Crystals 2017, 
Eljen Technology 2017), the distribution of te is well approximated by the following formula 
(Moszynski and Bengtson 1977, Moszynski and Bengtson 1979):

fte(t) = κe

∫ t

Θ

(
e−

t−τ
τd − e−

t−τ
τr

)
e
− (τ−Θ−2.5σe)

2

2σ2
e dτ , (2)

where τd = 1.5 ns, τr = 0.005 ns and σe = 0.2 ns, and κe stands for the normalization con-
stant. The values of the parameters τd, τr,σe were adjusted in order to describe the properties 
of the light pulses from the BC-420 scintillator (Moskal et al 2016, Saint Gobain Crystals 
2017). From the definition in equation (2):

te � Θ. (3)

The initial direction of flight of the photon in the scintillator is uniformly distributed. The 
photon on its way along the scintillator strip, from the emission point to the photomultiplier, 
may undergo many internal reflections, the number of which depends on the geometry of 
the scintillator and the photon emission angle. However, the space reflection symmetries 
of the cuboidal shapes considered in this article enable a significant simplification of the 
photon transport algorithm without following photon propagation in a typical manner. The 
statistical modeling of this phenomenon was presented in detail in Moskal et al (2016) and 
the analytical function describing the distribution function ftp  may be expressed by the fol-
lowing formula:

ftp(t) =
κpx
t2 e−µeffvt, (4)

where v is the speed of light in the scintillator strip, µeff is the effective absorption coefficient 
for the scintillator material and κp the normalization constant. The longitudinal position of the 
emission point is 0 � x � D (see figure 2). The pdf function ftp(t) in equation (4) is nonzero 
only for

tp �
x
v

, (5)

where tp = x
v corresponds to the photon flying along the strip.

Finally, the time of registration t|rmr is smeared using a Gaussian distribution centered on 
the mean transition time Td and variance σ2

d  estimated empirically:

Figure 2. Measurement provided with a single scintillator strip. The variable x describes 
the position of the emission point along the strip.
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ftd(t) =
1√

2πσd
exp

(
− (t − Td)

2

σ2
d

)
. (6)

In this work, we assume that the signal registered at the photomultiplier output has the 
same functional dependence on the time as the ftr function. We assume that the signal y ∈ RN 
is discretized by the oscilloscope. It is sampled at constant time intervals denoted with Ts. 
From the condition equations  (3) and (5) it follows that the registration time tr fulfills the 
inequality

tr � Θ+
x
v

.

It was assumed that the transition time td � 0. Therefore, the nth time sample is given by

t(n) = nTs +Θ+
x
v

n = 1, 2, ..., N, (7)

and the nth sample of the signal y is given as

y(n) = β(E, x)fn, where fn = ftr(t
(n)) n = 1, 2, ..., N, (8)

where β(E, x) is a coefficient providing the scaling of the pdf function ftr in order to obtain 
the voltage signal

β(E, x) = βEβx.

The value of β(E, x) depends on the energy deposited in the plastic scintillator during the γ 
photon interaction (βE  factor) and on the position of the γ photon interaction along the strip 
(βx factor). The higher the value of the deposited energy, the higher the value of the βE  param-
eter and the higher the signal amplitude. The βx term is necessary to describe absorption of 
photons propagating through the scintillator strip, since ftp  only provides information about 
the shape of the signal (see equation (4)). Hence, the closer to the left end of the scintillator, 
the smaller x (see figure 2) and the larger βx. Contributions of βE  to β are the same for both 
ends of the strip but βx are different. Hereon, in order to simplify the notation of the parameter 
β(E, x), we use only the symbol β.

2.1. Reconstruction of the interaction time and position

We denote the true values of the time and position of γ photon interaction by Θ0 and x0, 
respectively, and the corresponding reconstructed values are denoted as Θ̂, x̂. We add a ran-
dom noise term v(L,R) to the signal y(L,R) at the left ( L) and right ( R) end of the strip. Hence 
a registered signals ŷ(L) and ŷ(R) may be expressed as

ŷ(L)(Θ
0, x0) = y(L)(Θ

0, x0) + v(L). (9)

ŷ(R)(Θ
0, x0) = y(R)(Θ

0, x0) + v(R). (10)

We assume that the noise v(L) and v(R) are uncorrelated and obey the same multivariate normal 
distribution:

v(L), v(R) ∼ N (0, S), (11)

where S is the covariance matrix of ŷ(L) and ŷ(R), and we introduce the notation

∆Θ = Θ0 −Θ,

∆x = x0 − x.

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076
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According to the definitions of the theoretical ( y ) and registered ( ŷ) signals, the reconstruc-
tion of Θ̂, x̂ may be pursued by minimization of the function:

W(∆Θ,∆x) = (y(L) − ŷ(L))(y(L) − ŷ(L))
T + (y(R) − ŷ(R))(y(R) − ŷ(R))

T.
 

(12)

The solutions Θ̂, x̂ are found as:

(∆Θ̂,∆x̂) = argminW(∆Θ,∆x) (13)

where the hat denotes the estimators.
From equations (9)–(10) and (12) it is seen that the error function W is a positive-valued 

random variable. In order to determine ∆Θ̂ we assume that the error of the time of interaction 
has a normal distribution:

∆Θ̂ ∼ N (0,σ2
Θ), (14)

where σΘ is the search time resolution of the J-PET instrument.

2.2. Determination of time resolution

In order to calculate the time resolution, W has to be examined near the minimum, (0, 0). 
According to equation (12), the random variable W(0, 0) may be expressed as

W(0, 0) = v(L)vT
(L) + v(R)vT

(R),

=

N∑
n=1

v2
(L)(n) + v2

(R)(n).
 

(15)

The variance of W in the minimum will be denoted hereafter as Var[Wmin]. Using equation (11), 
and assuming the diagonality of matrix S, yields

Var[Wmin] = 2
N∑

n=1

2S2(n, n). (16)

On the other hand, we may analyse the shape of the function W in the two-dimensional 
space of time (∆Θ̂) and position (∆x̂) errors. For the purpose of this work, we will consider 
only the (∆Θ̂) error, and therefore analyse W in one dimension (∆x̂ = 0). Taylor series expan-
sion of W around (0, 0) is given as:

W(∆Θ̂, 0) ≈ W(0, 0) +
∂W(0, 0)

∂∆Θ̂
∆Θ̂ +

1
2
∂2W(0, 0)

∂∆Θ̂2
∆Θ̂2

≈ α0 + α1∆Θ̂ + α2∆Θ̂2.
 

(17)

It is evident that the first two coefficients (α0,α1) are equal to zero and the quadratic approx-
imation simplifies to

W(∆Θ̂, 0) ≈ α2∆Θ̂2. (18)

Under the assumption of normality of the ∆Θ̂ distribution (see equation (14)) the random 
variable W(∆Θ̂, 0) given in equation (18) has a χ2 distribution with variance

Var[Wmin] ≈ 2α2
2σΘ

4. (19)

The comparison of two formulae describing Var[Wmin] in equations (19) and (16) enables us to 
determine the time resolution, defined as the standard deviation σΘ :

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076
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σΘ =
4

√
2
∑N

n=1 S2(n, n)
α2

2 . (20)

2.3. Determination of the coincidence resolving time

In order to facilitate the direct comparison with results published in the field of TOF-PET we 
will evaluate the CRT based on the time resolution (σΘ). In the first approximation the CRT 
equals to 2.35

√
2σΘ. However, a fundamental lower limit of the CRT is defined by the time 

spread due to the unknown depth of interaction (DOI) in a single scintillator. It should be 
stressed that this factor gains importance for large scintillator detectors, as in J-PET for exam-
ple. Since the interactions may occur with nearly equal probability along the whole thickness 
(d ) of the plastic scintillator, time spread in a single scintillator may be well approximated 
by the uniform distribution with the width of d/c, where c denotes the γ photon speed. This 
implies that the distribution of the time difference between two detected γ photons has a trian-
gular form with FWHM equal to d/c. Therefore, the final value of the CRT may be estimated 
with the formula

CRT =

√
11.04σ2

Θ +
d2

c2 . (21)

As seen from equations (20)–(21), in order to evaluate σΘ, and therefore the CRT, one has to 
know the shape of the pdf function ftr to calculate the α2 coefficient, and also the errors of the 
signal registered on the photomultipliers to calculate the covariance matrix S. Determination 
of the shape of ftr was discussed in the previous section. In the next section we will analyse 
the sources of errors in the signals ŷ(L), ŷ(R).

2.4. Analysis of registered signals errors

The noise contribution to the signals registered on the left ( ŷ(L)) and right ( ŷ(R)) sides of the 
scintillator strip is the same, and therefore in this section we will omit the L, R indices. In 
further analysis we assume that the noise signal v (see equation (9)) is defined as a sum of two 
components:

v = vp + vr, (22)

where vp describes the perturbations of the pdf function ftr, based on the limited number of 
input photon signals, and vr stands for the signal recovery noise. The latter component is intro-
duced by the procedure of signal recovery based on the limited number of registered samples of 
the signal in the voltage domain. The problem of signal recovery has been widely discussed in 
Raczynski et al (2015a) and (2015b). We assume that the noises vp and vr are uncorrelated and 
normally distributed with covariance matrices Sp and Sr, respectively. Thus, one may write that

S = Sp + Sr. (23)

The exact values of vp and vr depend on the type of photomultiplier applied. In this work we 
consider two types of photomultiplier:

 • PMT—a vacuum tube photomultiplier treated as the basic one in the current J-PET 
 prototype,

 • MCP—a microchannel plate photomultiplier.

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076
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It should be underlined that the following analysis does not include silicon photomultipli-
ers. We have published extensive research into the possibility of application of silicon photo-
multipliers in the J-PET tomograph in our previous study (Moskal et al 2016).

Noises vp and vr are mainly influenced by the width of the single photoelectron contributing 
to the final output signal and the quantum efficiency of the photomultiplier. The most distinc-
tive feature of the MCP photomultiplier is its ability to register the arrival time of each photon. 
Thus, the output signal may be evaluated by using a model of a single photon. For all types of 
photomultiplier we use the Gaussian model (Bednarski et al 2014) for the shape of signal of a 
single photoelectron, with width σp . In the experimental section we will optimize the param-
eter σp  for the MCP photomultiplier, aiming to minimize the noise vp. The quantum efficiency 
may be used directly to estimate the number of photoelectrons induced in the photomultiplier, 
Np. In the following we will apply Np to model the total output signal.

It is worth noting that vr vanishes in the case of the MCP photomultiplier. There is no need 
to recover the output signal, since all photon arrival times are registered. In the following we 
will briefly describe the noises vp and vr.

2.4.1. Analysis of vp. The registered signal y affected only by the noise vp will be denoted by

ỹ = y + vp.

The signal ỹ consists of Np signals from individual photoelectrons:

ỹ =

Np∑
k=1

ỹk. (24)

As mentioned in section  2.4, the signal from single photoelectron ỹk is assumed to be a 
Gaussian function:

ỹk(n) =
β√

(2π)Npσp
exp

(
− (t(n) − tk

r )
2

2σ2
p

)
, n = 1, 2, ..., N, (25)

where tk
r  is a random variable with distribution ftr, which denotes the registration time of the 

kth photon.
We aim to calculate the diagonal elements of the covariance matrix Sp:

Sp(n, n) = E[(ỹ(n)− y(n))2], n = 1, 2, ..., N, (26)

where

E[(ỹ(n)− y(n))2] = E[(ỹ(n)− E[ỹ(n)] + E[ỹ(n)]− y(n))2]

= E[(ỹ(n)− E[ỹ(n)])2] + (E[ỹ(n)]− y(n))2

= Var(ỹ(n)) + Bias2(ỹ(n)), n = 1, 2, ..., N.

 

(27)

According to equation (24):

E[ỹ(n)] = NpE[ỹk(n)], (28)

Var(ỹ(n)) = NpVar(ỹk(n)), n = 1, 2, ..., N. (29)

Estimates of Var((ỹ(n)) and Bias(ỹ(n)) were introduced in Rosenblat (1956) and Simonoff 
(1996). Assuming that the underlying pdf function ftr is sufficiently smooth, and that σp → 0 
with Npσp → ∞ as Np → ∞, the Taylor series expansion gives

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076
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Bias(ỹ(n)) ≈ β
σ2

p f ′′tr (t
(n))

2
, (30)

Var(ỹ(n)) ≈ β2 ftr(t
(n))

2
√
πNpσp

, n = 1, 2, ..., N, (31)

where f ′′tr (t
(n)) is a second derivative of the pdf function ftr(t

(n)). The above approximations 
may be inaccurate for finite Np. The number of registered photoelectrons Np is of the order 
of hundreds, and a detailed discussion is given in section 3.1. Therefore, a new method for 
evaluating Var((ỹ(n)) and Bias(ỹ(n)) for finite Np should be proposed. During this study the 
novel concept of the estimation of requested statistics has been developed. The method is 
described in great detail in the appendix, where it is shown that the values of Var(ỹ), Bias(ỹ) 
may be estimated as:

Bias(ỹ(n)) ≈ β

(
2Φ(t(n),λσp)

3
√

2πσp
− ftr(t

(n))

)
, (32)

Var(ỹ(n)) ≈ β2 9Φ(t(n),λσp) + 8Φ2(t(n),λσp)− 16Φ3(t(n),λσp)

36πNpσ2
p

, n = 1, 2, ..., N,

 

(33)

where λ is the parameter defining the range of the second argument of the function Φ:

Φ(t(n),λσp) = Ftr(t
(n) + λσp)− Ftr(t

(n) − λσp), n = 1, 2, ..., N, (34)

and Ftr(t
(n)) is the cumulative distribution function of ftr(t

(n)) calculated at t(n). A discussion 
of formulae (32) and (33) is given in the appendix.

It should be underlined that both estimation methods—the proposed ones (equations (32), 
(33)) and those based on Taylor series approximation (equations (30), (31))—have the same 
asymptotic properties. It may be shown that for σp → 0 with Npσp → ∞ as Np → ∞:

Bias(ỹ(n)) = 0,
Var(ỹ(n)) = 0, n = 1, 2, ..., N.

2.4.2. Analysis of vr. We denote the signal y affected only by the vr noise as:

ŷ = ỹ + vr. (35)

The recovery process only takes place provided the complete output ỹ is registered on a pho-
tomultiplier. If the photon arrival times are registered, as in the MCP photomultiplier, then 
vr = 0. Recovery of the signal ŷ is carried out only for the PMT photomultiplier.

Details of the signal recovery process were given in Raczynski et al (2015a), and here only 
the main points will be recalled. The evaluation of the signal ŷ requires two steps: (i) recovery 
of the sparse expansion x̂ and (ii) calculation of ŷ based on x̂. The relation between the solu-
tion ŷ and its sparse representation x̂ is linear:

ŷ = Ax̂, (36)

where A is an orthonormal matrix. As shown in Raczynski et  al (2015a), from the Bayes 
theory the properties of a regularized solution can be found, in particular its covariance matrix, 
denoted hereafter as Sr(x), may be easily derived:

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076
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Sr(x) =

(
P−1 +

M
σ2N

1

)−1

 (37)

where P is the covariance matrix of the sparse signals x, and M denotes the number of reg-
istered samples of the signals y and σ is the standard deviation of the measurement error. 
Finally, based on equation (36), the covariance matrix Sr is given by

Sr = A
(

P−1 +
M
σ2N

1

)−1

AT. (38)

3. Experimental results

3.1. Experimental setup

In this section we investigate the accuracy of the proposed method for evaluation of the time 
resolution and CRT. The model is validated by performing the experiment with a single 
detection module of the J-PET scanner built from the BC-420 plastic scintillator strip, with 
dimensions of 5 × 19 × 300 mm, read out at two ends by Hamamatsu R4998 (PMT) photo-
multipliers. Our experimental setup is depicted in figure 3. Measurements are performed using 
γ photon from the 22Na source placed inside the lead collimator between the scintillator strip 
and the reference detector. The reference detector consists of a small scintillator strip with a 
thickness of 4 mm. A collimated beam emerging through a slit 1.5 mm wide and 20 cm long 
is used for irradiating desired points across the strip. In order to detect the event, coincident 
registration of signals from the PM1 and a reference detector is required. Such trigger condi-
tions enable us to select precisely the annihilation quanta that reduce the background from 
the deexcitation photon (1.27 MeV) to a negligible level (Moskal et al 2014b). The time of 
triggering by the reference detector is used to estimate the event arrival time. The constant 
electronic time delay between the true event time and the measured time of arrival at the refer-
ence detector does not influence the time resolution and is shifted to zero. The full waveforms 
of PMT signals are sampled using the Lecroy SDA 6000A oscilloscope running at a sampling 
rate of 20 Giga samples per second.

In our previous studies it was shown that the time resolution is fairly independent of the 
irradiation position (Moskal et al 2014b, 2015). Therefore, we determine the time resolution 
and CRT of the J-PET scanner in one position, at the center of the strip (x  =  15 cm). In order 
to evaluate the experimental value of time resolution and CRT a data set of 104 pairs of signals 
from PM1 and PM2 registered in coincidence was analyzed. In the first step, for each pair 
of fully sampled signals from the left and right ends of the strip, ỹ(L) and ỹ(R), a front-end 
electronic device probing signals at four voltage levels, at both the rising and falling slope, 
was simulated. The signals ŷ(L) and ŷ(R) were recovered using eight samples of signals ỹ(L) 

Figure 3. Scheme of the experimental setup.
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and ỹ(R) registered by an oscilloscope, according to the method described in section 2.4.2. For 
the kth pair of recovered signals ŷ(L) and ŷ(R), the energy of an event may be estimated based 
on the arithmetic mean of a number of photoelectrons registered at the left and right sides of 
the scintillator (Moskal et al 2014b) and is proportional to the sum of integrals of recovered 
signals ŷ(L) and ŷ(R). On the other hand, for the kth pair of ŷ(L) and ŷ(R), reconstruction of 
the time (Θ̂k) and position ( x̂k) was pursued by minimization of the function W in equa-
tion (12). The value of σΘ was calculated as the standard deviation of the empirical distribu-
tion of Θ̂k and was equal to about 80 ps. The corresponding value of CRT calculated based on  
equation (21), for a scintillator strip with a thickness of 19 mm, was equal to 275 ps. This value 
of CRT will be treated as the reference for the proposed approach. For clarity of presentation, 
we will calculate in section 3 only the CRT parameter.

According to the scheme presented in section 2.4, the evaluation of the time resolution and 
CRT of the PET system requires the investigation of the parameter α2 and covariance matrix 
S (see equation (20)). The values of these parameters vary for different types of applied pho-
tomultipliers and are also sensitive to the position of the point of interaction of the γ photon 
along the scintillator strip. The values of the parameters will be provided in sections 3.1 and 
3.2.

In order to model the signal at the photomultiplier output, the parameters of three pdf 
functions fte , ftp and ftd , defined in equations (2), (4) and (6), respectively, must be known. 
It is worth noting that only the last pdf function, ftd , describes the unique properties of a 
given type of the photomultiplier. σd  is delivered by the photomultiplier manufacturer: for the 
Hamamatsu R4998 photomultiplier (PMT) σd = 68 ps and for the MCP photomultiplier σd = 
40 ps (Hamamatsu 2017). However, as our initial tests show, there is a negligible influence of 
the value of σd  on the performance of the reconstruction method for the moment of γ photon 
interaction.

The measurement provides a discrete signal y at the photomultiplier. Repeating the 
time measurement under the same condition yields a set of photoelectron acquisition times  
(cf. equation (24)). The signal y consists of Np Gaussian shaped signals of single photoelec-
trons. In figure 4 an example of a single photoelectron signal registered with the PMT pho-
tomultiplier and its Gaussian fit are shown. The signals are marked with blue and red curves, 

Figure 4. An example of the signal of a single photoelectron acquired with the PMT 
photomultiplier (blue curve) and its Gaussian fit (red curve). In the measured signal two 
Gaussians are observed, but the second one is much smaller and its influence on the 
calculated parameters is negligible.
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respectively. The standard deviation σp  of this function is reported in Bednarski et al (2014) to 
be equal to 300 ps for a PMT photomultiplier. However, different numbers of photoelectrons 
(Np) are registered due to the different quantum efficiencies. In the following we will briefly 
recall the main results of our earlier works, enabling us to estimate properly the number Np. 
The light yield of plastic scintillators amounts to about 10 000 photons per 1 MeV of deposited 
energy. The 511 keV γ photon may deposit a maximum of 341 keV via Compton scattering 
(Szymanski et al 2014), which corresponds to the emission of about 3410 photons. On the 
other hand, in order to decrease the noise due to scattering of a γ photon inside patient’s body, 
a minimum energy deposition of about 200 keV is required (Moskal et al 2012). Therefore, 
the range of the number of emitted photons discussed hereafter in this article is 2000–3410. 
Experiments conducted with PMT photomultipliers have revealed that about 280 photoelec-
trons are produced from the emission of 3410 photons (Moskal 2014). According to the pre-
selected range (2000 to 3410 photons), the average number of emitted photons is about 2700. 
This number corresponds to Np = 220 registered photoelectrons with the PMT photomulti-
plier. Since the CRT of the J-PET system will be determined at the center of the strip, the num-
bers of photoelectrons Np contributing to the signals induced on the left and right scintillator 
ends are the same, and are equal to 110.

As mentioned at the beginning of section 2, the values of τd, τr  and σe of the pdf function 
fte were adjusted based on experimental studies with a single BC-420 scintillator strip. We 
have carried out numerous tests for various strips of the BC-420 scintillator type and found 
that the values of the estimated parameters of the fte pdf function were consistent within the 
measurement errors. Therefore, the signals evaluated based on the proposed model, presented 
in section  2.2, have shapes very similar to those registered by an oscilloscope during the 
experiment (see figure 5). In figure 5, the theoretical signal y at the center of the strip, evalu-
ated from equation (8), is presented. The parameter β (see formula (8)) was selected in such 
way that the amplitude of the signal is equal to the mean amplitude of signals registered at 
the center of the strip (x  =  15 cm). The analytical solution for the function ftr is difficult to 
find due to internal convolution in the function fte (see equation (2)). Therefore, numerical 

Figure 5. Signals observed in the PMT photomultiplier output generated by interaction 
in the center of the scintillator strip; the theoretical signal y (see equation (8)) is marked 
with the blue curve, and an example of signal ỹ registered by the oscilloscope (see 
equation (24)) is marked with a red dashed curve (the meaning of variable n is the same 
as in formula (7)).
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evaluation of a convolution operation was applied. The signals y and ỹ in figure 5 are shown 
in the discrete domain for discrete time samples and the curves connecting points are plotted 
to guide the eye.

Information about the signal y may be directly applied to evaluate the value of the param-
eter α2. In this work we are interested only in determination of the CRT of the J-PET sys-
tem, and we assume that the position of the γ photon interaction is known exactly (see  
equation (18)). Therefore, for a fixed position of interaction, the signal y may be shifted only 
in the time domain due to the error of time measurement ∆Θ. For ∆Θ = 0 the theoretical 
and registered signals overlap and W(∆Θ, 0) = 0 (see equation (12)). In order to evaluate α2, 
the error ∆Θ was varied from  −1 to 1 ns. For each value of ∆Θ, the function W(∆Θ, 0) was 
evaluated based on the shape of signal y shown in figure 5. The resulting, experimental func-
tion W(∆Θ, 0) is presented in figure 6 by a blue curve (see also equation (12)).

According to equation  (18), the experimental function W(∆Θ, 0) may be approximated 
near ∆Θ = 0 by a quadratic function. The quadratic approximation of the W(∆Θ, 0) function 
is marked in figure 6 by a red curve and the coefficient of the second-order polynomial func-

tion is equal to 11.2 V2

ns2 .

3.2. Verification of method for estimating signal ỹ

According to the assumptions in section 2.4, two main contributors to the signal noise are 
vp and vr. vr was estimated in Raczynski et al (2015a) and will be recalled at the end of this 
section. Here, a detailed study of the method for approximating Var(ỹ(n)) and Bias(ỹ(n)) will 
be carried out. The proposed method (see equations (32) and (33)) will be compared with the 
well-known approximation technique based on Taylor series expansion (see equations (30) 
and (31)). The Monte Carlo (MC) simulation will be provided as a reference for the results of 
both analytical approaches.

The MC simulation was carried out for a constant number of photoelectrons, Np = 220, 
registered by the PMT photomultiplier. In order to simulate Var(ỹ(n)) and Bias(ỹ(n)), only one 
timestamp of the original signal y, corresponding to the maximum value of 0.6 V (see figure 5), 
was used. The analysis of the maximum value in signal y allows one to evaluate the main 
contribution to the covariance matrix Sp; as seen from figure 9, the location of the maximum 

Figure 6. The shape of W(∆Θ, 0) near to the minimum.
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value of the signal y corresponds to the location of the maximum value on the diagonal of the 
covariance matrix Sp. The maximum value of the original signal y is observed in the sample 
n  =  60 (see figure 5). In the first step of MC simulation the random values of photon registra-
tion times tk

r  (k = 1, 2, ..., Np) were selected according to the ftr distribution. Next, the values of 
all Np functions ỹk(60) were evaluated based on equation (25) and summed up, giving ỹ(60). 
The above-mentioned procedure was repeated 106 times for different values of σp from 50 ps 
to 750 ps with a step of 25 ps. The range of σ|rmp was selected after preliminary calculations 
taking into account the expected number of registered photoelectrons in the J-PET scenario. 
Based on the large number of samples of ỹ(60), accurate estimation of bias and variance was 
possible. The resulting Bias2(ỹ(60)) and Var((ỹ(60)) are shown in figures 7 and 8, respectively.

The reference values of Bias2(ỹ(60)) and Var(ỹ(60)) obtained with MC simulation are 
marked by red curves in figures 7 and 8, respectively. The approximations of Var(ỹ) for the 
proposed method and the method based on Taylor series expansion (blue and green curves, 
respectively) are very similar to the reference curve for small values and tend to differ for larger 
values of σp. However, in the most interesting region, for σp equal to about 300 ps, the proposed 
method is more accurate than the one based on the Taylor series, and the values of Var(ỹ) are 
equal to 6.5 × 10−3 V2 and 7.0 × 10−3 V2, respectively (the reference value of Var(ỹ) from MC 
simulation is equal to 5.1 × 10−3 V2). Comparison of the Bias2(ỹ) and Var(ỹ) curves reveals the 
fundamental relation between variance and bias. The variance dominates for smaller values of 
σp and becomes comparable with bias for σp at a level of about 500 ps (compare the red curves 
in figures 7 and 8). For σp larger than 500 ps, the total error is mostly influenced by the bias. It is 
worth noting that the method based on the Taylor series significantly underestimates the values 
of Bias2(ỹ) (see figure 7), which leads to an underestimation of the overall error.

3.3. Evaluation of the time resolution of the J-PET system

In the first step we compare the covariance matrices Sp and Sr (see equations (22) and (23)) 
according to the description in section  3.1 and using our previous study (Raczynski et  al 
2015a). The resulting values of the diagonal elements of Sp and Sr are shown in figure  9. 

Figure 7. Comparison of the estimation of Bias2[ỹ] with two analytical approaches: the 
proposed one (blue curve) and one based on Taylor series expansion (green curve). The 
reference characteristics were obtained with the Monte Carlo simulation (red curve).
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Theoretical values of Sp were evaluated as in section 3.2 for PMT and the results are marked 
in figure 9 by a blue curve. The values of elements of Sr are marked by a green curve in 
 figure 9. The comparison of the resulting characteristics with the shape of the pdf function 
ftr, presented in figure 5, indicates that the reconstructed errors Sp and Sr are strongly related 
to the signal value. The maximum values of the diagonal elements of Sp and Sr occur near to 
the maximum of signal y (figure 5). On the other hand, analysis of the characteristics plotted 
in figure 9 reveals that the error introduced by the limited number of photoelectrons in the 
registered signal (Sp) is a dominating factor.

In order to compare the reconstructed values of the covariance matrices S|rmp and Sr, we 
use the trace (Tr) of the covariance matrix since diagonality is assumed. The values of Tr(Sp) 
and Tr(Sr) for different photomultiplier types are gathered in table 1. In the following we will 
analyse the value of Tr(Sp) as the function of the number of registered photoelectrons (Np) and 
the standard deviation of the single photoelectron signal (σp). The resulting characteristics 

Figure 8. Comparison of the estimation of Var[ỹ] with two analytical approaches: the 
proposed one (blue curve) and one based on Taylor series expansion (green curve). The 
reference characteristics were obtained with the Monte Carlo simulation (red curve).

Figure 9. Comparison of the diagonal elements of the covariance matrices Sp and Sr for 
the PMT photomultiplier.
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of Tr(Sp) as a function of σp  are shown in figure 10. The values of Tr(Sp) were calculated 
for three specified numbers of registered photoelectrons (220, 350 and 700) and are marked 
in figure 10 by blue, red and black curves, respectively. The smallest value of Np is specific 
for the PMT photomultiplier, as mentioned in section 3.1. The highest number, Np = 700. 
indicates the maximum number of registered photoelectrons in the experimental scenario, 
and was selected in order to demonstrate the best theoretical resolution of J-PET. Results in 
figure 10 show that all the Tr(Sp) functions, evaluated for a given number of registered pho-
toelectrons, have a minimum. The shape of the Tr(Sp) functions illustrates the fundamental 
trade-off between variance and bias, as mentioned in section 3.2. Hence, for given number of 
registered photoelectrons it is possible to adjust the optimal value of σp , denoted hereafter by 
σp(opt). Comparison of the σp(opt) values for three Np values in figure 10 shows that the larger 
the number of registered photoelectrons the smaller the value of σp(opt). For instance, for the 
PMT photomultiplier that registers 220 photoelectrons on average, the minimum error occurs 
for σp(opt) = 500 ps (blue curve in figure 10). For the PMT photomultiplier σp  is not a variable, 
and has fixed value of about 300 ps. However, the MCP photomultiplier registers timestamps 
of the signal instead of the complete signal. Therefore, the value of σp(opt) of each contributing 

Table 1. Summary of theoretical CRT calculations for the J-PET scanner. The 
parameters are described in the text. The presented values of CRT take into account an 
additional smearing of the time due to the unknown depth of interaction in a scintillator 
strip with a thickness of 19 mm (see equation (21) for details).

Parameter Unit

Photomultiplier type

PMT MCP

Np 1 220 220 350 700
σp ps 300 500 420 360
σp(opt) ps 500 500 420 360
Tr(Sp) V2 0.73 0.55 0.39 0.23
Tr(Sr) V2 0.22 0.0 0.0 0.0
Tr(S) V2 0.95 0.55 0.39 0.23
CRT ps 290 260 215 170

Figure 10. Trace of the Sp matrix as a function of the standard deviation of a single 
photoelectron signal (σp) for three specified numbers of registered photoelectrons 
Np = 220, 350 and 700.
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signal may be adjusted according to the number of registered timestamps (Np). In that sense, 
optimization of σp(opt) for the MCP photomultiplier may be obtained. Simulations using the ftr 
function give a N−4.1

p  dependence of σp(opt) on the number of photoelectrons.
In general, the MCP photomultiplier is capable of registering all the timestamps of the pho-

tons that reach the scintillator end. In order to account for possible inefficiency of the MCP, 
we determine the characteristics of J-PET equipped with a MCP in the range 100 � Np � 700. 
First, for a given number Np, the optimal value of σp(opt) was estimated based on the charac-
teristics of Tr(Sp) (see figure 10). Next, the matrix Sp was calculated based on the proposed 
technique (see equations (32) and (33)). Finally, σΘ was evaluated based on equation (20). In 
the case of MCP, Tr(Sr) = 0, since the output signal is given directly based on the measured 
timestamps and the assumed shape of the single photoelectron signal. The resulting CRT 
characteristics are shown by the red solid line in figure 11. The presented CRT values take 
into account an additional smearing of the time due to the unknown depth of interaction in a 
scintillator strip with a thickness of 19 mm (see equation (21) for details).

Additionally, the CRT calculated for σp = 300 ps (the shape of single photoelectron 
signal characteristic for the PMT photomultiplier), also including the vr error introduced 
by the signal recovery procedure Tr(Sr) = 0.22 V2 reported in Raczynski et al (2015a), is 
marked by a blue dashed line in figure 11. The theoretical value of CRT for the PMT pho-
tomultiplier is marked with a full circle on the blue curve, for Np = 220. The theoretical 
CRT of the J-PET scanner with a PMT photomultiplier is about 290 ps and agrees with the 
experimental CRT value, reported to be about 275 ps (Raczynski et al 2015a). For a fixed 
value of the quantum efficiency (equivalent to the number Np), further improvement of 
CRT is possible by the application of MCP photomultipliers. In the wide range of numbers 
of registered photoelectrons shown in figure 11, improvement of about 30 ps is observed 
(red and blue dashed curves). The presented results show that the best theoretical CRT of 
the J-PET scanner with 30 cm long strips is estimated for the MCP photomultiplier capable 
of registering all timestamps of arrival for 700 photons, is at the level of 170 ps. The main 
results of the study as well as the parameters of the analysed photomultipliers, are sum-
marized in table 1.

Figure 11. Theoretical calculations of CRT versus the number of photoelectrons Np, 
of the J-PET tomograph equipped with two types of photomultipliers: PMT and MCP. 
The presented values of CRT take into account an additional smearing of the time due 
to the unknown depth of interaction in a scintillator strip with a thickness of 19 mm (see 
equation (21) for details).
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4. Extension of the proposed method to conventional PET systems

The proposed framework for calculation of the time resolution and CRT may also be applied 
to state of the art PET scanners equipped with crystal scintillators. For this purpose, in order 
to estimate the time resolution, function W, introduced in equation (12), has to be adapted to 
the new situation. First of all, during reconstruction of the time of γ photon interaction (Θ̂), 
only signals from one side of the crystals are acquired (in the J-PET scanner two signals are 
registered at both ends of scintillator). Moreover, due to the small size of the crystals, only 
reconstruction of the interaction time Θ̂ is carried out; the function W is one-dimensional. 
Therefore, the function W is defined as

W(∆Θ) = (y − ŷ)(y − ŷ)T.

Finally the standard deviation σΘ is given by the formula

σΘ =
4

√∑N
n=1 S2(n, n)

α2
2 , (39)

which differs from equation (20) only by a factor 4
√

2 . In order to evaluate time resolution and 
CRT, one has to evaluate the distribution time of photon registration at the photomultiplier (tr) 
to calculate the α2 coefficient, and also the errors of the signal registered on the photomultipli-
ers to calculate the covariance matrix S.

In the case of PET scanners with inorganic crystal scintillators, the description of the pho-
ton registration time tr at the photomultiplier includes two random components te and td :

tr = te + td.

Compared with J-PET, here the propagation time of the photon along the scintillator (tp) may 
be neglected due to the small size of the single crystal. Therefore, the only difference in calcul-
ation of tr is the evaluation of the distribution of te. The main parameter that governs the speed 
of light emission after the absorption of a γ photon is the decay time. Crystal materials show 
decay pulse shapes that are single- or multi-exponential. For example, for BGO crystals a bi-
exponential shape is observed for the distribution of time te (Seifert et al 2012).

On the other hand, determination of the time resolution, defined in equation (39), requires 
information about the covariance matrix S of the registered signal ŷ. In section 2.4 we derived 
an analytical description for the main components of the covariance matrix S, i.e. the matrices 
Sp and Sr.

The formula for calculation of elements of the Sp matrix, describing the perturbations of 
the distribution function ftr based on a limited number of registered photoelectrons, given 
in equation  (26), may also be applied to the PET scanners with crystal scintillators. The 
only differences are in the parameters describing the shape of the ftr distribution function 
and the expected number of photoelectrons (Np) while including the light yield of crystal 
scintillators.

The latter component, matrix Sr, is introduced by the procedure of signal recovery based 
on the limited number of registered samples of the signal in the voltage domain. The J-PET 
system involves a four-threshold sampling method to generate samples of a signal waveform. 
An example of a similar electronic system for probing the signals in a voltage domain, cou-
pled with an experimental setup equipped with LSO crystals, was developed in Kim et al 
(2009). The waveforms of signals were read out by the oscilloscope, and an electronic system 
for probing these signals in a voltage domain with four thresholds was applied to reconstruct 
the pulse shape. This scheme allows evaluation of all the parameters required to calculate the 

L Raczyński et alPhys. Med. Biol. 62 (2017) 5076



5094

signal recovery error, according to the formula given in equation (38), for the PET system with 
crystal scintillators.

5. Conclusions

In this paper we have introduced a new method for estimating the time resolution and CRT 
of the J-PET system using only simulations which were tested based on data from a single 
detector module. This is particularly useful for the design of expensive devices. For the J-PET 
tomograph the most expensive part of the system is the photomultipliers. In this work two types 
of photomultiplier were simulated: vacuum tube photomultipliers and microchannel plates.

The basic idea of the method is the use of the statistical nature of the whole signal acqui-
sition process. We have highlighted three statistical phenomena: the emission of photons in 
the scintillator strip, the propagation of light pulses along the strip and registration of light 
in photomultipliers. Parameters of the probability density functions were selected in order to 
properly describe light pulses from the BC-420 plastic scintillator.

An important aspect of our work concerns the statistical analysis of a reconstruction error 
of the probability density function based on the set of single photoelectron signals. In this work 
dependences of the overall variance and bias on the number and width of the single photoelectron 
signals were evaluated. The proposed estimation method was validated using the Monte Carlo 
simulation and it was shown that the obtained results are consistent. Moreover, the proposed 
technique was demonstrated to be more accurate than the literature approach (Rosenblat 1956, 
Simonoff 1996). The developed estimation scheme is general and may be incorporated elsewhere.

In the experimental section, the method of time resolution and CRT estimation was tested 
using signals registered by means of the single detection module of the J-PET scanner. In order 
to evaluate the CRT of the J-PET detector we incorporated the method described in Raczynski 
et al (2015a). In the cited work, the CRT obtained with the experimental scheme with vacuum 
tube photomultipliers was reported to be equal to about 275 ps. Our calculation shows that 
application of the proposed estimation method can give very similar result of about 290 ps. The 
consistency of the experimental and theoretical results obtained for the J-PET scanner equipped 
with vacuum tube photomultipliers suggests that the estimated CRTs for other photomultipliers 
are reliable. The CRTs determined for the detector with microchannel plates were 215 ps and 
170 ps, assuming photomultiplier quantum efficiencies of 50% and 100%, respectively.

Future work will investigate other aspects of the signal acquisition process by using the 
proposed statistical model, for example the influence of the distribution parameters of the pho-
ton emission time on time resolution. In this study, the distribution parameters were selected 
in order to describe the properties of light signals observed in the BC-420 plastic scintillator. 
However, our group have developed a novel type of plastic scintillator and examined the 
influence of the chemical composition of the plastic scintillator on the overall performance 
of the J-PET detector (Wieczorek et al 2015a, 2015b, Wieczorek et al 2016). Application of 
the proposed model to that task enables us to directly use information about the shape of the 
distribution of the time of photon emission to predict the CRT of the J-PET detector.
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Appendix. Kernel density estimation

The function ỹk, describing the kth signal from a single photoelectron, given in equation (25), 
may be approximated by

ỹk(n) ≈





β√
(2π)Npσp

(
1 − (t(n)−tk

r )
2

λ2σ2
p

)
tk
r ∈ (t(n) − λσp, t(n) + λσp)

0 otherwise
 (A.1)

where n  =  1, 2, ..., N and λ contributes to the signal width. The probability that the random vari-
able ỹk(n) is equal to the specified value may be calculated based on the previously introduced 
function Φ (see equation (34)). In particular, the probability that the random variable ỹk(n) = 0 
is equal to 1 − Φ(t(n),λσp); the kth registration time tk

r  is out of range (t(n) − λσp, t(n) + λσp) 
(see the second case in equation (A.1)). Denoting the first case in equation (A.1) with uk:

uk(n) =
β√

(2π)Npσp

(
1 − (t(n) − tk

r )
2

λ2σ2
p

)
, n = 1, 2, ..., N, (A.2)

we may write that for n  =  1, 2, ..., N the expected value of ỹk(n) is equal to

E[ỹk(n)] = E[uk(n)]Φ(t(n),λσp) + E[0](1 − Φ(t(n),λσp))

= E[uk(n)]Φ(t(n),λσp),
 

(A.3)

and the variance of ỹk(n) is equal to

Var(ỹk(n)) = E[(uk(n)− E[uk(n)])2]Φ(t(n),λσp) + E[(0 − E[uk(n)])2](1 − Φ(t(n),λσp))

= Var(ũk(n))Φ(t(n),λσp) + E[uk(n)]2(1 − Φ(t(n),λσp)).
 

(A.4)

In order to simplify the further calculations the following assumption is proposed. Note that 
in most interesting cases the range (t(n) − λσp, t(n) + λσp), is narrow compared with the esti-
mated pdf function ftr domain. Therefore, the pdf function ftr is considered to be uniform in 
the range (t(n) − λσp, t(n) + λσp) :

ftr(ε) � const. ε ∈ (t(n) − λσp, t(n) + λσp). (A.5)

It is worth noting that the smaller the ratio of the single-signal to overall signal width the better 
the performance of the proposed approximation method.

Under the assumption in equation  (A.5), the required moments in equations  (A.3) and 
(A.4), E[uk(n)], E[uk(n)]2 and Var(ũk(n)), can be easily derived. After some simple calcul-
ations the equations for the expected value and the variance of the random variable ỹk(n) are 
given by

E(ỹ(n)) ≈ β
2Φ(t(n),λσp)

3
√

2πσp
, n = 1, 2, ..., N,

Var(ỹ(n)) ≈ β2 9Φ(t(n),λσp) + 8Φ2(t(n),λσp)− 16Φ3(t(n),λσp)

36πNpσ2
p

, n = 1, 2, ..., N.
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