M.Hodana^{a b} *and P.Moskal^{a b}

We report on the analysis of the $pd \rightarrow {}^{3}He\eta \rightarrow {}^{3}He\gamma e^{-}e^{+}$ reaction, measured with the WASA-at-COSY detector at a proton beam momentum of 1.69 GeV. The aim of this measurement is the investigation of the electromagnetic structure of the η meson by determining the transition form factor. Predictions based on the assumption that the η is a point-like particle (QED) as well as results of calculations in the framework of the Vector Meson Dominance (VMD) model [1] are compared in Fig 1. The points show the invariant mass distribution of e^+e^- pairs obtained from simulations using the WASA Monte Carlo software.

Fig. 1: Invariant mass distribution $M_{e^+e^-}$ for the $\eta \rightarrow e^+e^-\gamma$ decay. The solid line shows the QED predictions for a point-like particle while the dashed line represents the VMD form factor. Points indicate simulations of $2.5 \times 10^5 \ \eta \rightarrow e^+e^-\gamma$ events in the case of QED and $5 \times 10^5 \ \eta \rightarrow e^+e^-\gamma$ events for VMD model.

In order to select the reaction of interests the following criteria for the particle identification have been applied. ${}^{3}He$ has been identified based on the energy deposition in the forward detector (FD) - see Fig. 2, left. Additionaly, based on the simulation a restriction on the ${}^{3}He$ polar angle to be less then 10° has been made (Fig. 3).

Fig. 2:Left: Energy loss in both layers of the first, thin forward detector array (FWC) versus energy loss in the first layer of the forward range hodoscopes (FRH) - the band of ${}^{3}He$ particles is visible. Right: e/π identification with the CD - energy loss in the calorimeter (SEC) versus magnetic rigidity. Both spectra are obtained from data.

The e^+e^- pairs are selected by demanding events with two, opposite charged tracks in the central detector and distinquishing between electrons and pions by their energy deposit. For the identification of the γ particle, the following is required: γ energy higher than 120 MeV and, in the η rest

Fig. 3:PLUTO simulation of the ${}^{3}He$ emission angle. The
dotted line shows the geometrical boundary of the for-
ward detector (due to the central hole for the beam
pipe). Nearly 95% of ${}^{3}He$ are within the forward ac-
ceptance.

frame, the opening angle between the photon and the lepton pair (which forms the virtual photon) closest to 180° .

The acceptance of the WASA detector for these cuts is plotted in Fig. 4. For the simulation the PLUTO[2] events generator has been used.

Fig. 4:The acceptance for the $pd \rightarrow {}^{3}He\eta \rightarrow {}^{3}Hee^{+}e^{-}\gamma$ reaction obtained from the simulation of $5 \times 10^{5} \eta$ -Dalitz events.

The most important background contributions stem from reactions with pions due to pion-electron misidentification. Of great importance is the $\eta \rightarrow \gamma \gamma$ decay due to its high branching ratio and the high possibility of external conversion. For the background studies, the following reactions have been considered:

$$\eta \to \gamma \gamma \to (e^+e^-)\gamma$$

$$\eta \to \pi^+\pi^-\gamma$$

$$\eta \to \pi^+\pi^-\pi^0 \to \pi^+\pi^-(\gamma\gamma)$$

$$\eta \to \pi^0\pi^0\pi^0 \to 6\gamma$$

$$pd \to {}^{3}He\pi^+\pi^-$$

$$pd \to {}^{3}He\pi^+\pi^-\pi^0$$

with the conditions:

$$70^{\circ}$$
< $\gamma^* \gamma$ opening angle (lab.)< 2.6 GeV < $MM_{e^+e^-\gamma}$ < 2.9 GeV 80° < $|\Phi_{\gamma*} - \Phi_{\gamma}\rangle|$ < 300°

 $\frac{\text{Fig. 5: Missing mass of }^{3}He. \text{ The Monte Carlo spectra are normalized with the respective cross sections. Data are normalized to the total Monte Carlo in order to compare shapes of spectra.}$

The Monte Carlo spectra have been normalized according to the appropiate cross sections, for $10^7 pd \rightarrow {}^3He\eta$. The data have been scaled to the total simulation using the maximum bin content.

The further, refined analysis will be done in order to suppress the pion contribution.

References:

- L. G. Landsberg, Physics Reports, **128** (6), p.301-376, Nov 1985.
- [2] I. Frhlich et al., PoS ACAT2007, 076 (2007) [arXiv:0708.2382 [nucl-ex]]

^{*a*} Institut für Kernphysik and Jülich Center for Hadron Physics, D-52425 Jülich, Germany

^b Institute of Physics, Jagiellonian University, PL-30059 Cracow, Poland

* Supported by COSY-FFE