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The deviations from combined Charge, Parity, and Time (CPT) sym-
metry could indicate the presence of new physics beyond the current the-
oretical framework. The positronium (Ps), the lightest bound state of
an electron–positron pair, offers a unique probe for such investigations be-
cause it is an eigenstate of charge conjugation (C) and parity (P). This
work explores the potential of the Jagiellonian Positron Emission Tomog-
raphy (J-PET) detector for sensitive tests of CPT symmetry in the three-
photon decay of ortho-Ps (o-Ps) atom. The CPT symmetry invariance in
o-Ps decays has been previously tested using the J-PET detector, measur-
ing the CPT-violating angular correlation between the o-Ps spin and its
annihilation photon momenta, achieving a precision of 0.00067 ± 0.00095.
However, a range of five orders of magnitude is still unexplored to test
its exactness. A Monte Carlo simulation study is presented to distinguish
between the o-Ps signal and background events using Multivariate Data
Analysis (TMVA). We discuss the impact of improving the sample purity
in enhancing the sensitivity of the CPT symmetry test.

DOI:10.5506/APhysPolBSupp.17.7-A2

1. Introduction

The precise validation of fundamental symmetries, such as CPT, is es-
sential to comprehend the universe. While CPT is widely regarded as an
exact symmetry, ongoing experimental investigations continue to scrutinize
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for potential violations, especially within systems involving charged leptons
like positronium [1, 2]. The positronium, a bound state of an electron and
a positron, offers a unique platform for such studies [3, 4]. Previous exper-
iments utilizing detectors such as Gammasphere [5] and J-PET [6] have es-
tablished stringent constraints on CPT invariance, but further advancements
in experimental techniques are imperative to achieve even higher precision
levels [7–9]. The experiments have tested the exactness of CPT symmetry in
electromagnetic interactions through the 3γ decays of polarized positronium
atoms. The CPT-odd angular correlation operator, defined as S⃗ · (k⃗1 × k⃗2),
between the spin of ortho-positronium (o-Ps) and normal to the decay plane
of its annihilation photons, is studied. The three annihilation photons from
the o-Ps decay are co-planar. A non-zero expectation value of this operator
would indicate a signature of CPT symmetry violation [10].

The present work aims at improving further the precision limit of the
testing of the CPT-odd operator using the J-PET detector [11–13]. It is
a versatile detector from plastic scintillators optimized for recording pho-
tons emitted from annihilations of e+e− or via the formation of positronium
atoms [14–18]. The paper describes the methodology employed to distin-
guish the ortho-positronium signal events from the background using ma-
chine learning classification methods to evaluate the CPT-odd operator. The
results are compared to the traditional cut-based approach for identifying
signal events.

2. Method

The Multivariate Analysis is used to select the signal events in evaluating
the CPT-odd angular correlation operator with the J-PET detector. The
boosted decision trees (BDT) and multilayer perceptrons (MLP) neural net-
work methods from the Toolkit for Multivariate Analysis (TMVA) [19, 20]
are utilized to explore the possibility of improving the signal significance.
The algorithms are used in the perspective of separating the o-Ps signal
from the background events.

We use a Monte Carlo simulated sample prepared in the framework of the
J-PET detector [21] for event classification using BDT and MLP algorithms.
The event for this study is defined as three Compton scattered interactions
of photons in the plastic scintillators of the detector, which includes the
primary and the secondary Compton scatterings. It is a 12-fold event corre-
sponding to every photon’s interaction position (X,Y, Z) and time (t) in the
detector [22]. The signal event consists of three annihilation photons from
the o-Ps decay, while the other 3γ events that mimic the signal are the back-
ground. A pre-selection condition on energy deposited by a single photon
in an event within the range of 30–340 keV was applied while preprocessing
the data before using any classification algorithm.
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The input variables used for the TMVA neural networks and boosted
decision trees were derived from mathematical equations based on photon
interaction position and time. These include the sum of two smallest an-
gles between the photons (θ1 + θ2) that are calculated from the interaction
positions, energy deposited by a single photon (Edep) in the scintillator, mo-
menta of the most and least energetic photon (k1, k3), minimum distance
from the detector center to the line of response between every two interac-
tions (min dLOR), and the time difference between two-photon interactions
(dtij).

The BDT algorithm uses 400 decision trees, each with a maximum depth
of 2. The MLP network is configured with 100 training cycles and a single
hidden layer containing 10 neurons. The signal and background are split
into training and test samples where 50% of the whole sample is used for
training and the rest for testing. Picking of training and test samples is
done using a random seed. The multivariate techniques in TMVA consider
training events for which the desired output is known, i.e. either signal or
background. It classifies the signal and background events by determining
a mapping (response) function that maps the input observable into a single
variable for each event [19].

3. Results

The BDT and MLP neural networks evaluation for the considered signal
and background classification from training and testing the data set in terms
of TMVA response is given in Fig. 1. The distribution at the testing and
training stage overlaps shows no over-training effects for each method. The
region close to one corresponds to more signal, while the region near zero is
dominated by background.

The Receiver Operating Characteristic (ROC) curve representing signal
efficiency and background rejection for two different classifiers is given in
Fig. 2. There is not much difference in terms of background discriminating
powers using the BDT and MLP methods as both curves lie one over the
other. The optimal cut value to distinguish signal from background events
is decided based on the response of a particular MVA classifier. The value
is chosen where the signal efficiency from each MVA classifier is 70%. The
events with MVA output greater than the cut value are selected for signal
and background events. The exemplary distribution for identified signal
and background events is given in Fig. 3 and Fig. 4 for the BDT and MLP
classifiers respectively.
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(a) (b)

Fig. 1. Normalized distribution of the response from (a) BDT and (b) MLP classi-
fier models for signal and background, shown separately for both the testing and
training data. Higher response values reflect the model’s confidence in classifying
events, with larger values indicating a higher probability of the event being a sig-
nal.

BDT
MLP

Fig. 2. ROC curve. The distribution for signal efficiency and background rejection
after using the BDT (pink) and MLP (green) classifiers to distinguish between the
signal and background in the test sample.
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(a) (b)

Fig. 3. Exemplary distribution for signal and background classification from the
BDT method using a test MC simulated data sample. The x-axis represents the
sum of the two smallest relative angles between the three recorded photons calcu-
lated from the center of the detector. The y-axis represents the shortest distance
between the hypothetical 2γ annihilation point on the line of response (LOR) to
the center of the detector. (a) represents the o-Ps → 3γ events and (b) is for the
3γ background events at the chosen cut value where signal efficiency is 70% for the
BDT classifier.

(a) (b)

Fig. 4. The distribution for (a) signal and (b) background events after the threshold
value at the signal efficiency of 70% for the MLP method.
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4. Conclusion

The multivariate analysis is performed for the identification of signal
events via BDT and MLP neural networks. The chosen threshold value is
applied to the distribution of a sum of two smallest angles between photons
and the minimum distance from the detector center to the line of response
(min dLOR) for signal and background events. These algorithms can reject
70% of the background and maintain the signal-to-background ratio to 1.3
in the final sample. The cut-based selection procedure is also performed
for the dataset studied in this work, with a similar sequence of cuts on the
variables described in Ref. [6]. It is estimated that the signal purity of the
data sample is increased from 55% for the cut-based selection method [23]
to 70% using multivariate analysis. This approach for event classification
would be beneficial with a Modular J-PET detector where we aim to reach
the precision of the CPT symmetry test to 10−5.
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