

Simulation studies of a brain PET insert for the total body J-PET tomograph

M Rädler^{1,2} and P Moskal^{1,2} on behalf of the J-PET Collaboration

¹Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland ²Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Kraków, Poland

Outline

- 1. Total body PET & brain PET scanners
- 2. Design considerations
- 3. Monte Carlo simulations: sensitivity
- 4. Image reconstructions: spatial resolution
- 5. Conclusions

1.

Total body PET & brain PET scanners

Total body PET scanners

First large field of view scanners commercially available:

https://eu.united-imaging.com/en/product-service/products/mi/uexplorer

Enabling: low dose imaging, short scan times, dynamic imaging, ...

But also: very expensive ...

Total body J-PET scanner

Cost-effective plastic scintillator based total body J-PET under development at UJ

Bass et al.: "Colloquium: Positronium physics and biomedical applications" Rev. Mod. Phys. (2023)

Rationale of brain PET

Fig. 1. Spatial resolution of PET using ¹⁸F as a function of diameter of detector ring.

Moses. Nucl. Instrum. Methods Phys. Res. A 648 (2011)

Rationale of brain PET

PET enables imaging of

- Metabolism
- Neurochemistry
- Connectivity
- ...

Pavese: "PET studies in Parkinson's disease motor and cognitive dysfunction" Parkinsonism & related disorders (2012)

Marcus et al.: "Brain PET in the Diagnosis of Alzheimer's Disease" Clinical nuclear medicine (2014)

Galldiks et al.: "PET imaging in patients with brain metastasis – "report of the RANO/PET group *Neuro-Oncology* (2019)

Novel contrast mechanisms based on positronium imaging:

Bass et al.: "Colloquium: Positronium physics and biomedical applications" *Rev. Mod. Phys.* (2023)

Horizontal brain PET scanners

2016

	HRRT	jPET-D4	Rainbow VHD	CerePET	NeuroPET/CT	BresTome	NX
Crystal	LSO:Ce	GSO	LYSO	LYSO	LYSO	LSGO	LYSO
Layers	2	4	1	1	2	1	1
Sens.	1.04%	11%	-	-	~1%	7-8%	4.6%
Res.	2.5 mm	< 3 mm	~ 3 mm	2.1 mm	~ 3 mm	~ 2.5 mm	< 2 mm

Upright brain PET scanners

	Brain PET	CareMiBrain	BBX-PET	NeuroLF	4D-PET	HIAS-29000	Pharos
Crystal	LYSO	LYSO	LYSO	LGSO/LYSO	LYSO	LFS	Lutbased
Layers	4	1	1	2	1	1	1
Sens.	2.14%	10%	2.59%	3.5 %	16.2%	~2.2%	6%
Res.	2 mm	~ 1.5 mm	~ 2.6 mm	< 2 mm	~ 1 mm	~ 2 mm	< 2 mm

Unconv. brain PET scanners

	Mind-tracker	Dodecahedror	n Head shaped	VRAIN	Prism PET	Top hat PET	Br. PET Expl.
Crystal	LYSO	LYSO	LYSO	LFS	LYSO	LYSO:Ce	LYSO
Layers	1	1	3	4	1	1	8
Sens.	-	6.15%	16%	2.5%	5.2%	17%	~24%
Res.	1.5-3 mm	1.98 mm	1.5 mm	2.2 mm	1.35 mm	~ 3 mm	0.9 mm

2.

Design considerations

Magnification inserts

"[...] hybrid systems using a moderateresolution **total body scanner** (such as J-PET) **combined with** a very high performing **brain imager** could be a very attractive approach."

Magnification "outsert"

Frontal detector

Initial concept:

Brain insert

Brain insert variations

16 x (6 x 30 x 330 mm³) Inactive area: 8.6%

23 x (4 x 18 x 330 mm³) Inactive area: 12.4%

Monte Carlo simulations: sensitivity

July 5th 2024 17

GATE v9.3 simulations

TYPE Technology and Code PUBLISHED 21 March 2024 DOI 10.3389/fphy.2024.1294916

Adjustments

Compton counts • Minimum r-sector difference

New GATE Digitizer Unit for versions post v9.3

Olga Kochebina^{1*}, Daniel A. B. Bonifacio^{2,3}, Georgios Konstantinou⁴, Adrien Paillet¹, Christian M. Pommranz^{5,6}, Gašper Razdevšek⁷, Viatcheslav Sharyy^{1,8}, Dominique Yvon^{1,8} and Sebastien Jan¹

"[...] possibility of GATE v9.3 to construct Coincidences coming from several different GATE Systems."

July 5th 2024

18

GATE v9.3 simulations

Simulation

Physics list	emlivermore_polar		
Scintillator material	EJ-230]	
Source volume	2400 mm		
Source type	511 keV back-to-back photons		
Source activity	1 MBq		
Scan time	100 s		

Event selection

Lower threshold	200 keV
Coincidence window	3 ns

Sensitivity: Frontal detector

July 5th 2024 20 *z* [mm]

Sensitivity: TB & Brain insert

Sensitivity: TB & Brain insert

22

Complete sensitivity map

Resolution: 10 x 10 x 20 mm³

July 5th 2024 23

Image reconstructions: spatial resolution

July 5th 2024 24

Reconstruction with CASToR

- Capable of handling unconventional geometries
- Using MLEM without TOF
- Multi-Siddon projector
- 1 mm image spacing

Emphasis on **relative** over absolute spatial resolution

Gong et al.: "On the assessment of spatial resolution of PET systems with iterative image reconstruction" *Phys. Med. Biol.* **61** (2016)

27

Iteration 2

Iteration 50 July 5th 2024

July 5th 2024

28

Iteration 4

Iteration 4

Iteration 4

Iteration 4

Geometrical interpretation

Moses. Nucl. Instrum. Methods Phys. Res. A 648 (2011)

5.

Conclusions

Conclusions

- Brain PET insert under development at J-PET
- Simulation and reconstruction platform for nested geometries developed
- Based on sensitivity: Insert should be superior to the frontal detector
- The coincidences between inner and outer detectors have low resolution for geometrical reasons

July 5th 2024 32

Thank You for Your attention!

Thanks to the **J-PET collaboration**:

Supported by:

July 5th 2024 35

Backup

GATE v9.3 adjustments

Underestimation of Compton counts

CASToR sensitivity map

