First Positronium Lifetime Imaging using 52Mn and 55Co with a plastic-based PET scanner
M. Das, S. Sharma, E. Yitayew Beyene, A. Bilewicz, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, J. Hajduga, S. Jalali, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, G. Korcyl, T. Kozik, K. Kubat, D. Kumar, S. Kumar Kundu, A. Kunimmal Venadan, E. Lisowski, F. Lisowski, J. Medrala-Sowa, S. Moyo, W. Mryka, S. Niedźwiecki, A. Pandey, P. Pandey, S. Parzych, A. Porcelli, B. Rachwał, M. Rädler, N. Rathod, N. Razzaq, A. Rominger, K. Shi, M. Skurzok, M. Słotwiński, A. Stolarz, T. Szumlak, P. Tanty, K. Tayefi Ardebili, S. Tiwari, K. Valsan Eliyan, R. Walczak, E. Ł. Stępień, P. Moskal

abstract
This study demonstrates applicability of 52Mn and 55Co radionuclides for positronium imaging. Positronium Lifetime Imaging
(PLI) extends positron emission tomography by using the lifetime of positronium atoms as a probe of tissue molecular
architecture. However, its practical use requires ?+ emitters that also provide an additional prompt ? ray to mark the positron creation time. In this work, we report the first PLI measurements performed with 52Mn and 55Co using the modular J-PET. Four samples were studied in each experiment: two Certified Reference Materials (polycarbonate and fused silica) and two
human tissues (cardiac myxoma and adipose). The selection of PLI events was based on the registration of two 511 keV
annihilation photons and one prompt gamma in triple coincidence. From the resulting lifetime spectra we extracted the mean
ortho-positronium lifetime ?oPs and the mean positron lifetime ?Tmean for each sample. The measured values of ?oPs in
polycarbonate using both isotopes matches well with the certified reference values. Furthermore, 55Co reproduced identical
results for fused-silica measurements at their respective uncertainty levels. In contrast, measurements with 52Mn in fused silica show a minor deviation, which could be caused by the Parafilm spacer. In myxoma and adipose tissue, the reduced ?oPs values are mainly linked to the long storage history of the samples rather than to the choice of isotope. Comparing peak-to-background ratios and spectral purity, 55Co provides cleaner PLI data under the same experimental conditions. Although 52Mn offers a longer half-life and a multi gamma cascade enhancing ?+ + ? coincidences, but at the expense of higher background. In this study, we demonstrate that the applied selection criteria on the data measured with the modular J-PET can be used for PLI studies even with radionuclides with complex decay patterns.
Studies of CPT symmetry in positronium decays with 192 plastic strip J-PET detector
N. Chug, S. D. Bass, E. Y. Beyene, C. Curceanu, E. Czerwiński, M. Das, K. V. Eliyan, M. Gorgol, J. Hajduga, S. Jalali, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, A. Kierys, G. Korcyl, T. Kozik, K. Kubat, D. Kumar, A. Kunimmal Venadan, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, S. Moyo, W. Mryka, S. Niedźwiecki, P. Pandey, S. Parzych, E. Pérez del Río, A. Porcelli, B. Rachwał, M. Rädler, A. Sienkiewicz, S. Sharma, M. Skurzok, E. Ł. Stępień, T. Szumlak, P. Tanty, K. Tayefi Ardebili, S. Tiwari, P. Moskal

abstract
accepted in Phys. Rev. D.
Studies of attenuation effects in two- and three-photon positronium decays in phantom models
K. Kasperska, M. Skurzok, P. Moskal

abstract
Objective: Positron Emission Tomography enables non-invasive imaging of metabolic processes. Standard PET reconstructs radiotracer distribution using two back-to-back photons from electron-positron annihilation. However, about 1% of annihilations results in creation of three photons. Three photons may be created in direct annihilation and in annihilation via formation of metastable ortho-positronium carrying additional information not used by conventional PET. The Jagiellonian-PET detector allows us to use this information by applying positronium imaging based on ortho-positronium lifetime or the 3gamma/2gamma decay ratio. Accurate tomographic images require attenuation correction. This study investigates photon absorption in phantom models to form a basis for future attenuation maps for three-gamma decays. Methods: Monte Carlo simulations in ROOT and GATE were performed for water sphere, cylinder, a simplified head model, and the mesh50_XCAT phantom. Both p-Ps and o-Ps decays were simulated as uniformly distributed sources. Absorption probabilities were calculated by checking whether any photon in a multiplet interacted within the phantom. Emission-point-specific absorption maps were generated for all models. Toy Monte Carlo and GATE simulations showed good overall agreement. Results: Photon triplets from o-Ps decays experienced higher absorption than photon pairs from p-Ps due to lower individual energies and higher attenuation. Absorption maps showed dependence of photon survival probability on the decay location. In the mesh50_XCAT phantom, 24.9% of p-Ps pairs and 10.3% of o-Ps triplets escaped without interaction. Conclusions: Gamma absorption depends strongly on positronium decay mode and location, with o-Ps events experiencing higher attenuation. The generated absorption maps provide the first step toward dedicated attenuation correction for three-gamma positronium imaging, enabling accurate reconstruction in novel 3?/2? positronium imaging technique. A Study presented indicates that the absorption of 3gamma in the head is only about 2.5 times higher than for the 2gamma, which is encouraging for further development of the 3gamma/2gamma rate ratio imaging.
First Positronium Imaging Using 44Sc With the J-PET Scanner: a Case Study on the NEMA-Image Quality Phantom
Manish Das, Sushil Sharma, Ermias Yitayew Beyene, Aleksander Bilewicz, Jarosław Choiński, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Kavya Valsan Eliyan, Jakub Hajduga, Sharareh Jalali, Krzysztof Kacprzak, Tevfik Kaplanoglu, Łukasz Kapłon, Kamila Kasperska, Aleksander Khreptak, Grzegorz Korcyl, Tomasz Kozik, Karol Kubat, Deepak Kumar, Anoop Kunimmal Venadan, Edward Lisowski, Filip Lisowski, Justyna Medrala Sowa, Simbarashe Moyo, Wiktor Mryka, Szymon Niedźwiecki, Piyush Pandey, Szymon Parzych, Alessio Porcelli, Bartłomiej Rachwał, Elena Perez del Rio, Martin Rädler, Axel Rominger, Kuangyu Shi, Magdalena Skurzok, Anna Stolarz, Tomasz Szumlak, Pooja Tanty, Keyvan Tayefi Ardebili, Satyam Tiwari, Rafał Walczak, Ewa Ł. Stępień, Paweł Moskal

abstract
Positronium Lifetime Imaging (PLI), an emerging extension of conventional positron emission tomography (PET) imaging, offers a novel window for probing the submolecular properties of biological tissues by imaging the mean lifetime of the positronium atom. Currently, the method is under rapid development in terms of reconstruction and detection systems. Recently, the first in vivo PLI of the human brain was performed using the J-PET scanner utilizing the 68Ga isotope. However, this isotope has limitations due to its comparatively low prompt gamma yields, which is crucial for positronium lifetime measurement. Among alternative radionuclides, 44Sc stands out as a promising isotope for PLI, characterized by a clinically suitable half-life (4.04 hours) emitting 1157 keV prompt gamma in 100% cases after the emission of the positron. This study reports the first experimental demonstration of PLI with 44Sc, carried out on a NEMA-Image Quality (IQ) phantom using the Modular J-PET tomograph?the first plastic scintillators-based PET scanner.
muPPET: Investigating the Muon Puzzle with J-PET Detectors
A. Porcelli, K. Valsan Eliyan, G. Moskal, N. Nasrin Protiti, D. L. Sirghi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, M. Das, M. Gorgol, J. Hajduga, S. Jalali, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, G. Korcyl, T. Kozik, D. Kumar, K. Kubat, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, W. Mryka, S. Moyo, S. Niedźwiecki, S. Parzych, P. Pandey, E. Perez del Rio, B. Rachwał, M. Rädler, S. Sharma, M. Skurzok, E. Ł. Stępień, T. Szumlak, P. Tanty, K. Tayefi Ardebili, S. Tiwari, and P. Moskal

abstract
The muPPET [muon Probe with J-PET] project aims to investigate the Muon
Puzzle seen in cosmic ray air showers. This puzzle arises from the observation of a significantly
larger number of muons on Earth's surface than that predicted by the current
theoretical models. The investigated hypothesis is based on recently observed asymmetries
in the parameters for the strong interaction cross-section and trajectory of an outgoing particle
due to projectile-target polarization. The measurements require detailed information
about muons at the ground level, including their track and charge distributions. To achieve
this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland),
the J-PET detectors, will be employed, taking advantage of their well-known resolution
and convenient location for detecting muons that reach long depths in the atmosphere.
One station will be used as a muon tracker, while the second will reconstruct the core of
the air shower. In parallel, the existing hadronic interaction models will be modified and
fine-tuned based on the experimental results. In this work, we present the conceptualization
and preliminary designs of muPPET.
Development of correction techniques for a J-PET scanner
M. Das, R. Bayerlein, S. Sharma, S. Parzych, S. Niedźwiecki, R. Badawi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, K. Valsan Eliyan, B. Głowa, A. Hubalewska-Dydejczyk, K. Kacprzak, T. Kaplanoglu, K. Kasperska, G. Korcyl, A. Khreptak, K. Kubat, D. Kumar, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, S. Moyo, W. Mryka, M. Opalińska, P. Pandey, M. Rädler, M. Skurzok, A. Sowa-Staszczak, B. A. Spencer, P. Tanty, K. Tayefi Ardebili, A. Kunimmal Venadan, E. Stępień, P. Moskal

abstract
Objective: Positron Emission Tomography (PET) is a widely used medical imaging technique that allows for non-invasive imaging of metabolic processes. However, traditional PET scanners rely on costly inorganic scintillators, which limit their accessibility ? especially in light of emerging long axial field-of-view devices. The modular J-PET scanner, an innovative alternative, uses 50-cm long plastic scintillator strips, offering a cost-effective and modular solution. In this study, we develop and assess the PET data correction techniques required for quantitative image reconstruction. Methods: We present methods for attenuation correction, random coincidence correction using the Delayed Time Window (DTW) technique, and scatter correction based on Monte Carlo simulations. Phantom studies using the NEMA IQ phantom were performed to qualitatively evaluate these corrections. Results: The results demonstrate that our implemented corrections for attenuation, randoms, and scattered coincidences successfully improve the uniformity of tracer distribution in homogenous volumes and significantly reduce undesired activity in cold regions. Despite limitations in sensitivity and axial resolution, the applied correction techniques effectively enhance image quality, providing promising results for future applications. Conclusions: These findings highlight the potential of the modular J-PET system to offer affordable PET imaging and to pave the way towards a total-body PET scanner based on plastic scintillators. Future work will focus on quantitative validation and the implementation of these corrections for human subject imaging.
First Experimental Demonstration of Positronium Lifetime Imaging with 44Sc Using the J-PET Scanner
M. Das, S. Sharma, E. Y. Beyene, A. Bilewicz, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, J. Hajduga, S. Jalali, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, G. Korcyl, K. Kubat, D. Kumar, A. Kunimmal Venadan, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, S. Moyo, W. Mryka, S. Niedźwiecki, P. Pandey, S. Parzych, A. Porcelli, B. Rachwał, E. P.D. Río, M. Rädler, M. Skurzok, A. Stolarz, T. Szumlak, S. Tiwari, P. Tanty, K. Tayefi Ardebili, K. Valsan Eliyan, R. Walczak, E.Ł. Stępień, P. Moskal
2025 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), Yokohama, Japan (1-8 November 2025))
Studies of the absorption parameter 3gamma/2gamma in positronium decays
K. Kasperska, M. Skurzok
2nd Symposium on new trends in nuclear and medical physics, Krakow, Poland (24-26 September 2025)