Positronium image of the human brain in vivo
P. Moskal, J. Baran, S. Bass, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, M. Das, K. Dulski, K.V. Eliyan, K. Fronczewska, A. Gajos, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, M. Kobylecka, G. Korcyl, T. Kozik, W. Krzemień, K. Kubat, D. Kumar, J. Kunikowska, J. Mączewska, W. Migdał, G. Moskal, W. Mryka, S. Niedźwiecki, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, F. Tayefi, K. Tayefi, P. Tanty, W. Wiślicki, L. Królicki, E. Ł. Stępień
abstract
Positronium is abundantly produced within the molecular voids of a patient?s body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
First positronium image of the human brain in vivo
P. Moskal, J. Baran, S. Bass, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, M. Das, K. Dulski, K.V. Eliyan, K. Fronczewska, A. Gajos, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, M. Kobylecka, G. Korcyl, T. Kozik, W. Krzemień, K. Kubat, D. Kumar, J. Kunikowska, J. Mączewska, W. Migdał, G. Moskal, W. Mryka, S. Niedźwiecki, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, F. Tayefi, K. Tayefi, P. Tanty, W. Wiślicki, L. Królicki, E. Ł. Stępień
abstract
Positronium, an unstable atom consisting of an electron and a positron, is abundantly produced within the molecular voids of a patient?s body during positron emission tomography (PET) diagnosis. Its properties, such as its average lifetime between formation and annihilation into photons, dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen molecules. However, the diagnostic information that positronium may deliver about early molecular alterations remains unavailable in clinics with state-of-the-art PET scanners.
This study presents the first in vivo images of positronium lifetime in humans. We developed a dedicated J-PET system with multiphoton detection capability for imaging. The measurements of positronium lifetime were performed on a patient with a glioblastoma tumor in the brain. The patient was injected intratumorally with the 68Ga radionuclide attached to Substance-P, which accumulates in glioma cells, and intravenously with 68Ga attached to the PSMA-11 ligand, which is selective to glioma cells and salivary glands. The 68Ga radionuclide is routinely used in PET for detecting radiopharmaceutical accumulation and was applied for positronium imaging because it can emit an additional prompt gamma. The prompt gamma enables the determination of the time of positronium formation, while the photons from positronium annihilation were used to reconstruct the place and time of its decay. The determined positronium mean lifetime in glioblastoma cells is shorter than in salivary glands, which in turn is shorter than in healthy brain tissues, demonstrating for the first time that positronium imaging can be used to diagnose disease in vivo. This study also demonstrates that if current total-body PET systems were equipped with multiphoton detection capability and the 44Sc radionuclide was applied, it would be possible to perform positronium imaging at 6500 times greater sensitivity than achieved in this research. Therefore, it is anticipated that positronium imaging has the potential to bring a new quality of cancer diagnosis in clinics.