First Positronium Imaging Using 44Sc With the J-PET Scanner: a Case Study on the NEMA-Image Quality Phantom
Manish Das, Sushil Sharma, Ermias Yitayew Beyene, Aleksander Bilewicz, Jarosław Choiński, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Kavya Valsan Eliyan, Jakub Hajduga, Sharareh Jalali, Krzysztof Kacprzak, Tevfik Kaplanoglu, Łukasz Kapłon, Kamila Kasperska, Aleksander Khreptak, Grzegorz Korcyl, Tomasz Kozik, Karol Kubat, Deepak Kumar, Anoop Kunimmal Venadan, Edward Lisowski, Filip Lisowski, Justyna Medrala Sowa, Simbarashe Moyo, Wiktor Mryka, Szymon Niedźwiecki, Piyush Pandey, Szymon Parzych, Alessio Porcelli, Bartłomiej Rachwał, Elena Perez del Rio, Martin Rädler, Axel Rominger, Kuangyu Shi, Magdalena Skurzok, Anna Stolarz, Tomasz Szumlak, Pooja Tanty, Keyvan Tayefi Ardebili, Satyam Tiwari, Rafał Walczak, Ewa Ł. Stępień, Paweł Moskal

abstract
Positronium Lifetime Imaging (PLI), an emerging extension of conventional positron emission tomography (PET) imaging, offers a novel window for probing the submolecular properties of biological tissues by imaging the mean lifetime of the positronium atom. Currently, the method is under rapid development in terms of reconstruction and detection systems. Recently, the first in vivo PLI of the human brain was performed using the J-PET scanner utilizing the 68Ga isotope. However, this isotope has limitations due to its comparatively low prompt gamma yields, which is crucial for positronium lifetime measurement. Among alternative radionuclides, 44Sc stands out as a promising isotope for PLI, characterized by a clinically suitable half-life (4.04 hours) emitting 1157 keV prompt gamma in 100% cases after the emission of the positron. This study reports the first experimental demonstration of PLI with 44Sc, carried out on a NEMA-Image Quality (IQ) phantom using the Modular J-PET tomograph?the first plastic scintillators-based PET scanner.
muPPET: Investigating the Muon Puzzle with J-PET Detectors
A. Porcelli, K. Valsan Eliyan, G. Moskal, N. Nasrin Protiti, D. L. Sirghi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, M. Das, M. Gorgol, J. Hajduga, S. Jalali, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, G. Korcyl, T. Kozik, D. Kumar, K. Kubat, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, W. Mryka, S. Moyo, S. Niedźwiecki, S. Parzych, P. Pandey, E. Perez del Rio, B. Rachwał, M. Rädler, S. Sharma, M. Skurzok, E. Ł. Stępień, T. Szumlak, P. Tanty, K. Tayefi Ardebili, S. Tiwari, and P. Moskal

abstract
The muPPET [muon Probe with J-PET] project aims to investigate the Muon
Puzzle seen in cosmic ray air showers. This puzzle arises from the observation of a significantly
larger number of muons on Earth's surface than that predicted by the current
theoretical models. The investigated hypothesis is based on recently observed asymmetries
in the parameters for the strong interaction cross-section and trajectory of an outgoing particle
due to projectile-target polarization. The measurements require detailed information
about muons at the ground level, including their track and charge distributions. To achieve
this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland),
the J-PET detectors, will be employed, taking advantage of their well-known resolution
and convenient location for detecting muons that reach long depths in the atmosphere.
One station will be used as a muon tracker, while the second will reconstruct the core of
the air shower. In parallel, the existing hadronic interaction models will be modified and
fine-tuned based on the experimental results. In this work, we present the conceptualization
and preliminary designs of muPPET.
Nonmaximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner
P. Moskal, D. Kumar, S. Sharma, E.Y. Beyene, N. Chug, A. Coussat, C. Curceanu, E. Czerwinski, M. Das, K. Dulski, M. Gorgol, B. Jasinska, K. Kacprzak, T. Kaplanoglu, L. Kaplon, T. Kozik, E. Lisowski, F. Lisowski, W. Mryka, S. Niedzwiecki, S. Parzych, E.P. del Rio, M. Radler, M. Skurzok, E. L. Stepien, P. Tanty, K. Tayefi Ardebili, K. Valsan Eliyan

abstract
In the state-of-the-art Positron Emission Tomography (PET), information about the polarization of annihilation photons is not available. Current PET systems track molecules labeled with positron-emitting radioisotopes by detecting the propagation direction of two photons from positron-electron annihilation. However, annihilation photons carry more information than just the site where they originated. Here we present a novel J-PET scanner built from plastic scintillators, in which annihilation photons interact predominantly via the Compton effect, providing information about photon polarization in addition to information on photon direction of propagation. Theoretically, photons from the decay of positronium in a vacuum are maximally entangled in polarization. However, in matter, when the positron from positronium annihilates with the electron bound to the atom, the question arises whether the photons from such annihilation are maximally entangled. In this work, we determine the distribution of the relative angle between polarization orientations of two photons from positron-electron annihilation in a porous polymer. Contrary to prior results for positron annihilation in aluminum and copper, where the strength of observed correlations is as expected for maximally entangled photons, our results show a significant deviation. We demonstrate that in porous polymer, photon polarization correlation is weaker than for maximally entangled photons but stronger than for separable photons. The data indicate that more than 40% of annihilations in Amberlite resin lead to a non-maximally entangled state. Our result indicates the degree of correlation depends on the annihilation mechanism and the molecular arrangement. We anticipate that the introduced Compton interaction-based PET system opens a promising perspective for exploring polarization correlations in PET as a novel diagnostic indicator.
Development of correction techniques for a J-PET scanner
M. Das, R. Bayerlein, S. Sharma, S. Parzych, S. Niedźwiecki, R. Badawi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, K. Valsan Eliyan, B. Głowa, A. Hubalewska-Dydejczyk, K. Kacprzak, T. Kaplanoglu, K. Kasperska, G. Korcyl, A. Khreptak, K. Kubat, D. Kumar, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, S. Moyo, W. Mryka, M. Opalińska, P. Pandey, M. Rädler, M. Skurzok, A. Sowa-Staszczak, B. A. Spencer, P. Tanty, K. Tayefi Ardebili, A. Kunimmal Venadan, E. Stępień, P. Moskal

abstract
Objective: Positron Emission Tomography (PET) is a widely used medical imaging technique that allows for non-invasive imaging of metabolic processes. However, traditional PET scanners rely on costly inorganic scintillators, which limit their accessibility ? especially in light of emerging long axial field-of-view devices. The modular J-PET scanner, an innovative alternative, uses 50-cm long plastic scintillator strips, offering a cost-effective and modular solution. In this study, we develop and assess the PET data correction techniques required for quantitative image reconstruction. Methods: We present methods for attenuation correction, random coincidence correction using the Delayed Time Window (DTW) technique, and scatter correction based on Monte Carlo simulations. Phantom studies using the NEMA IQ phantom were performed to qualitatively evaluate these corrections. Results: The results demonstrate that our implemented corrections for attenuation, randoms, and scattered coincidences successfully improve the uniformity of tracer distribution in homogenous volumes and significantly reduce undesired activity in cold regions. Despite limitations in sensitivity and axial resolution, the applied correction techniques effectively enhance image quality, providing promising results for future applications. Conclusions: These findings highlight the potential of the modular J-PET system to offer affordable PET imaging and to pave the way towards a total-body PET scanner based on plastic scintillators. Future work will focus on quantitative validation and the implementation of these corrections for human subject imaging.
Simulation studies of a brain PET insert for the total body J-PET tomograph
Simulation studies of a brain PET insert for the total body J-PET tomograph M. Rädler, E. Y. Beyene, A. Bilewicz, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Das, J. Hajduga, S. Jalali, T. Kaplanoglu, Ł. Kapłon, A. Khreptak, G. Korcyl, K. Kubat, D. Kumar, A. Kunimmal Venadan, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, S. Moyo, W. Mryka, S. Niedźwiecki, P. Pandey, S. Parzych, A. Porcelli, B. Rachwał, E. P. d. Río, S. Sharma, M. Skurzok, A. Stolarz, T. Szumlak, S. Tiwari, P. Tanty, K. Tayefi Ardebili, K. Valsan Eliyan, R. Walczak, E. Ł. Stępień, P. Moskal
IEEE NSS MIC RTSD in Yokohama
Study of Total-Body J-PET sensitivity as a function of the ring number
S. Jalali, M. Rädler, K. Tayefi Ardebili, P. Moskal
2nd Symposium on new trends in nuclear and medical physics
Optimizing the event selection for the total-body J-PET scanner with a brain PET insert: a simulation study
M. Rädler, P. Moskal
SNTINMP25 - 2nd Symposium on New Trends in Nuclear and Medical Physics
GATE simulations of a multi-detector geometry: combining the total body J-PET with a brain insert
M. Rädler, P. Moskal
GATE Scientific meeting in Athens
Evaluation of normalization and random coincidences corrections of clinical images obtained with the first PET from plastic scintillators
S. Parzych, A. Coussat, M. Das, W. Krzemień,1,2, E. Y. Beyene, E. Czerwiński, B. Głowa, A. Hubalewska-Dydejczyk, T. Kaplanoglu, G. Korcyl, W. Mryka, S. Niedźwiecki, M. Opalińska, M. Rädler, S. Sharma, M. Skurzok, A. Sowa-Staszczak, P. Tanty, K. Tayefi Ardebili, P. Moskal, E. Ł. Stępień
EANM24 - Annual Congress of the European Association of Nuclear Medicine
Simulation studies of a brain PET insert for the total body J-PET tomograph
M. Rädler, P. Moskal
5th Jagiellonian Symposium on Advances in Particle Physics and Medicine in Kraków