muPPET: Investigating the Muon Puzzle with J-PET Detectors
A. Porcelli, K. Valsan Eliyan, G. Moskal, N. Nasrin Protiti, D. L. Sirghi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, M. Das, M. Gorgol, J. Hajduga, S. Jalali, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, G. Korcyl, T. Kozik, D. Kumar, K. Kubat, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, W. Mryka, S. Moyo, S. Niedźwiecki, S. Parzych, P. Pandey, E. Perez del Rio, B. Rachwał, M. Rädler, S. Sharma, M. Skurzok, E. Ł. Stępień, T. Szumlak, P. Tanty, K. Tayefi Ardebili, S. Tiwari, and P. Moskal

abstract
The muPPET [muon Probe with J-PET] project aims to investigate the Muon
Puzzle seen in cosmic ray air showers. This puzzle arises from the observation of a significantly
larger number of muons on Earth's surface than that predicted by the current
theoretical models. The investigated hypothesis is based on recently observed asymmetries
in the parameters for the strong interaction cross-section and trajectory of an outgoing particle
due to projectile-target polarization. The measurements require detailed information
about muons at the ground level, including their track and charge distributions. To achieve
this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland),
the J-PET detectors, will be employed, taking advantage of their well-known resolution
and convenient location for detecting muons that reach long depths in the atmosphere.
One station will be used as a muon tracker, while the second will reconstruct the core of
the air shower. In parallel, the existing hadronic interaction models will be modified and
fine-tuned based on the experimental results. In this work, we present the conceptualization
and preliminary designs of muPPET.