muPPET: Investigating the Muon Puzzle with J-PET Detectors
A. Porcelli, K. Valsan Eliyan, G. Moskal, N. Nasrin Protiti, D. L. Sirghi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, M. Das, M. Gorgol, J. Hajduga, S. Jalali, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Kasperska, A. Khreptak, G. Korcyl, T. Kozik, D. Kumar, K. Kubat, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, W. Mryka, S. Moyo, S. Niedźwiecki, S. Parzych, P. Pandey, E. Perez del Rio, B. Rachwał, M. Rädler, S. Sharma, M. Skurzok, E. Ł. Stępień, T. Szumlak, P. Tanty, K. Tayefi Ardebili, S. Tiwari, and P. Moskal

abstract
The muPPET [muon Probe with J-PET] project aims to investigate the Muon
Puzzle seen in cosmic ray air showers. This puzzle arises from the observation of a significantly
larger number of muons on Earth's surface than that predicted by the current
theoretical models. The investigated hypothesis is based on recently observed asymmetries
in the parameters for the strong interaction cross-section and trajectory of an outgoing particle
due to projectile-target polarization. The measurements require detailed information
about muons at the ground level, including their track and charge distributions. To achieve
this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland),
the J-PET detectors, will be employed, taking advantage of their well-known resolution
and convenient location for detecting muons that reach long depths in the atmosphere.
One station will be used as a muon tracker, while the second will reconstruct the core of
the air shower. In parallel, the existing hadronic interaction models will be modified and
fine-tuned based on the experimental results. In this work, we present the conceptualization
and preliminary designs of muPPET.
Real-time antiproton annihilation vertexing with submicrometer resolution
Michael Berghold, Davide Orsucci, Francesco Guatieri, Sara Alfaro, Marcis Auzins, Benedikt Bergmann, Petr Burian, Roberto Sennen Brusa, Antoine Camper, Ruggero Caravita, Fabrizio Castelli, Giovanni Cerchiari, Roman Jerzy Ciuryło, Ahmad Chehaimi, Giovanni Consolati, Michael Doser, Kamil Eliaszuk, Riley Craig Ferguson, Matthias Germann, Anna Giszczak, Lisa Glöggler, Łukasz Graczykowski, Malgorzata Grosbart, Natali Gusakova, Fredrik Gustafsson, Stefan Haider, Saiva Huck, Christoph Hugenschmidt, Malgorzata Anna Janik, Tymoteusz Henryk Januszek, Grzegorz Kasprowicz, Kamila Kempny, Ghanshyambhai Khatri, Łukasz Kłosowski, Georgy Kornakov, Valts Krumins, Lidia Lappo, Adam Linek, Sebastiano Mariazzi, Pawel Moskal, Dorota Nowicka, Piyush Pandey, Daniel PĘcak, Luca Penasa, Vojtech Petracek, Mariusz Piwiński, Stanislav Pospisil, Luca Povolo, Francesco Prelz, Sadiqali Rangwala, Tassilo Rauschendorfer, Bharat Rawat, Benjamin Rienäcker, Volodymyr Rodin, Ole Rohne, Heidi Sandaker, Sushil Sharma, Petr Smolyanskiy, Tomasz Sowiński, Dariusz Tefelski, Theodoros Vafeiadis, Marco Volponi, Carsten Peter Welsch, Michal Zawada, Jakub Zielinski, Nicola Zurlo, AEgIS Collaboration

abstract
Primary goal of the AEgIS experiment is to precisely measure the free fall of antihydrogen within Earth's gravitational field. To this end, cold(equivalent to 50 K) antihydrogen will traverse a two-grid moiré deflectometer before annihilating onto a position-sensitive detector, which shall determine the vertical position of the annihilation vertex relative to the grids with micrometric accuracy. Here, we introduce a vertexing detector based on a modified mobile camera sensor and experimentally demonstrate that it can measure the position of antiproton annihilations within 0.62(+0.40)(-0.22) micrometer, a 35-fold improvement over the previous state of the art for real-time antiproton vertexing. These methods are directly applicable to antihydrogen. Moreover, the sensitivity to light of the sensor enables in situ calibration of the moiré deflectometer, substantially reducing systematic errors. This sensor emerges as a breakthrough technology toward the AEgIS scientific goals and will constitute the basis for the development of a large-area detector for conducting antihydrogen gravity measurements.
Development of correction techniques for a J-PET scanner
M. Das, R. Bayerlein, S. Sharma, S. Parzych, S. Niedźwiecki, R. Badawi, E. Yitayew Beyene, N. Chug, C. Curceanu, E. Czerwiński, K. Valsan Eliyan, B. Głowa, A. Hubalewska-Dydejczyk, K. Kacprzak, T. Kaplanoglu, K. Kasperska, G. Korcyl, A. Khreptak, K. Kubat, D. Kumar, E. Lisowski, F. Lisowski, J. Mędrala-Sowa, S. Moyo, W. Mryka, M. Opalińska, P. Pandey, M. Rädler, M. Skurzok, A. Sowa-Staszczak, B. A. Spencer, P. Tanty, K. Tayefi Ardebili, A. Kunimmal Venadan, E. Stępień, P. Moskal

abstract
Objective: Positron Emission Tomography (PET) is a widely used medical imaging technique that allows for non-invasive imaging of metabolic processes. However, traditional PET scanners rely on costly inorganic scintillators, which limit their accessibility ? especially in light of emerging long axial field-of-view devices. The modular J-PET scanner, an innovative alternative, uses 50-cm long plastic scintillator strips, offering a cost-effective and modular solution. In this study, we develop and assess the PET data correction techniques required for quantitative image reconstruction. Methods: We present methods for attenuation correction, random coincidence correction using the Delayed Time Window (DTW) technique, and scatter correction based on Monte Carlo simulations. Phantom studies using the NEMA IQ phantom were performed to qualitatively evaluate these corrections. Results: The results demonstrate that our implemented corrections for attenuation, randoms, and scattered coincidences successfully improve the uniformity of tracer distribution in homogenous volumes and significantly reduce undesired activity in cold regions. Despite limitations in sensitivity and axial resolution, the applied correction techniques effectively enhance image quality, providing promising results for future applications. Conclusions: These findings highlight the potential of the modular J-PET system to offer affordable PET imaging and to pave the way towards a total-body PET scanner based on plastic scintillators. Future work will focus on quantitative validation and the implementation of these corrections for human subject imaging.
The AEgIS Experiment: Progress and Future Outlook
R. Caravita, S. Alfaro Campos, M. Auzins, M. Berghold, B. Bergmann, P. Burian, R.S. Brusa, A. Camper, F. Castelli, G. Cerchiari, R. Ciurylo, A. Chehaimi, G. Consolati, M. Doser, K. Eliaszuk, R. Ferguson, M. Germann, A. Giszczak, L.T. Glöggler, L. Graczykowski, M. Grosbart, F. Guatieri, N. Gusakova, F.P. Gustafsson, S. Haider, S. Huck, C. Hugenschmidt, M. Janik, T. Januszek, G. Kasprowicz, K. Kempny, G. Khatri, L. Klosowski, G. Kornakov, V. Krumins, L. Lappo, A. Linek, S. Mariazzi, P. Moskal, M. Münster, P. Pandey, D. Pecak, L. Penasa, V. Petracek, M. Piwinski, S. Pospišil, F. Prelz, S.A. Rangwala, T. Rauschendorfer, B.S. Rawat, B. Rienacker, V. Rodin, O. Rohne, H. Sandaker, S. Sharma, P. Smolyanskiy, T. Sowiński, D. Tefelski, M. Volponi, C.P. Welsch, M. Zawada, J. Zielinski, N. Zurlo on behalf of the AEgIS Collaboration
published in: PoS EXA-LEAP2024, 024 (2024)
The AEgIS experiment at CERN is pioneering measurements of gravity, spectroscopy, and interferometry using pulsed antimatter atomic sources. This work provides an overview of the AEgIS experimental setup and highlights recent advancements in antihydrogen production, positronium laser cooling, and the creation of antiprotonic atoms. Key technological developments, including the overhaul of the control system and its impact on precision experiments, are reviewed. Future perspectives for AEgIS before CERN Long Shutdown 3 and beyond are summarized.