Realistic Total-Body J-PET Geometry Optimization--Monte Carlo Study
J. Baran, W. Krzemień, L. Raczyński, M. Bała, A. Coussat, S. Parzych, N. Chug, E. Czerwiński, C. Oana Curceanu, M. Dadgar, K. Dulski, K. Eliyan, J. Gajewski, A. Gajos, B. Hiesmayr, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, G. Korcyl, T. Kozik, D. Kumar, S. Niedźwiecki, D. Panek, E. Perez del Rio, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Skurzok, E. Stępień, F. Tayefiardebili, K. Tayefiardebili, W. Wiślicki, P. Moskal
abstract
Total-Body PET imaging is one of the most promising newly introduced modalities in the medical diagnostics. State-of-the-art PET scanners use inorganic scintillators such as L(Y)SO or BGO, however, those technologies are very expensive, prohibitng the broad total-body PET applications. We present the comparative studies of performance characteristics of the cost-effective Total-Body PET scanners using Jagiellonian PET (J-PET) technology that is based on plastic scintillators. Here, we investigated in silico five realistic Total-Body scanner geometries, varying the number of rings, scanner radius, and distance between the neighbouring rings. Monte Carlo simulations of two NEMA phantoms (2-meter sensitivity line source and image quality) and the anthropomorphic XCAT phantom, were used to assess the performance of the tested geometries. We compared the sensitivity profiles and we performed the quantitative analysis of the reconstructed images by using the quality metrics such as contrast recovery coefficient, background variability and root mean squared error. The optimal scanner design was selected for the first Total-Body J-PET scanner configuration.
Positronium image of the human brain in vivo
P. Moskal, J. Baran, S. Bass, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, M. Das, K. Dulski, K.V. Eliyan, K. Fronczewska, A. Gajos, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, M. Kobylecka, G. Korcyl, T. Kozik, W. Krzemień, K. Kubat, D. Kumar, J. Kunikowska, J. Mączewska, W. Migdał, G. Moskal, W. Mryka, S. Niedźwiecki, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, F. Tayefi, K. Tayefi, P. Tanty, W. Wiślicki, L. Królicki, E. Ł. Stępień
abstract
Positronium is abundantly produced within the molecular voids of a patient?s body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Feasibility of the J-PET to monitor range oftherapeutic proton beams
J. Baran, D. Borys, K. Brzeziński, J. Gajewski, M. Silarski, N. Chug, A. Coussat, E. Czerwiński, M. Dadgar, K. Dulski, K.V. Eliyan, A. Gajos, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, R. Kopeć, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, A.J. Lomax, K. McNamara, S. Niedźwiecki, P. Olko, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, M. Simbarashe, S. Sharma, Shivani, R.Y. Shopa, T. Skóra, M. Skurzok, P. Stasica, E.Ł. Stępień, K. Tayefi, F. Tayefi, D.C. Weber, C. Winterhalter, W. Wiślicki, P. Moskal, A. Ruciński
abstract
Objective: The aim of this work is to investigate the feasibility of the JagiellonianPositron Emission Tomography (J-PET) scanner for intra-treatment proton beamrange monitoring. Approach: The Monte Carlo simulation studies with GATE and PET imagereconstruction with CASToR were performed in order to compare six J-PET scannergeometries (three dual-heads and three cylindrical). We simulated proton irradiationof a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out BraggPeak (SOBP) of various ranges. The sensitivity and precision of each scanner werecalculated, and considering the setup?s cost-effectiveness, we indicated potentiallyoptimal geometries for the J-PET scanner prototype dedicated to the proton beamrange assessment. Main results: The investigations indicate that the double-layer cylindrical andtriple-layer double-head configurations are the most promising for clinical application.We found that the scanner sensitivity is of the order of 10?5coincidences per primaryproton, while the precision of the range assessment for both SPB and SOBP irradiationplans was found below 1 mm. Among the scanners with the same number of detectormodules, the best results are found for the triple-layer dual-head geometry. Significance: We performed simulation studies demonstrating that the feasibilityof the J-PET detector for PET-based proton beam therapy range monitoring ispossible with reasonable sensitivity and precision enabling its pre-clinical tests in theclinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometryconfigurations seem promising for the future clinical application. Experimental testsare needed to confirm these findings.
First positronium image of the human brain in vivo
P. Moskal, J. Baran, S. Bass, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, M. Das, K. Dulski, K.V. Eliyan, K. Fronczewska, A. Gajos, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, M. Kobylecka, G. Korcyl, T. Kozik, W. Krzemień, K. Kubat, D. Kumar, J. Kunikowska, J. Mączewska, W. Migdał, G. Moskal, W. Mryka, S. Niedźwiecki, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, F. Tayefi, K. Tayefi, P. Tanty, W. Wiślicki, L. Królicki, E. Ł. Stępień
abstract
Positronium, an unstable atom consisting of an electron and a positron, is abundantly produced within the molecular voids of a patient?s body during positron emission tomography (PET) diagnosis. Its properties, such as its average lifetime between formation and annihilation into photons, dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen molecules. However, the diagnostic information that positronium may deliver about early molecular alterations remains unavailable in clinics with state-of-the-art PET scanners.
This study presents the first in vivo images of positronium lifetime in humans. We developed a dedicated J-PET system with multiphoton detection capability for imaging. The measurements of positronium lifetime were performed on a patient with a glioblastoma tumor in the brain. The patient was injected intratumorally with the 68Ga radionuclide attached to Substance-P, which accumulates in glioma cells, and intravenously with 68Ga attached to the PSMA-11 ligand, which is selective to glioma cells and salivary glands. The 68Ga radionuclide is routinely used in PET for detecting radiopharmaceutical accumulation and was applied for positronium imaging because it can emit an additional prompt gamma. The prompt gamma enables the determination of the time of positronium formation, while the photons from positronium annihilation were used to reconstruct the place and time of its decay. The determined positronium mean lifetime in glioblastoma cells is shorter than in salivary glands, which in turn is shorter than in healthy brain tissues, demonstrating for the first time that positronium imaging can be used to diagnose disease in vivo. This study also demonstrates that if current total-body PET systems were equipped with multiphoton detection capability and the 44Sc radionuclide was applied, it would be possible to perform positronium imaging at 6500 times greater sensitivity than achieved in this research. Therefore, it is anticipated that positronium imaging has the potential to bring a new quality of cancer diagnosis in clinics.
Discrete symmetries tested at 10^-4 precision using linear polarization of photons from positronium annihilations
P. Moskal, E. Czerwiński, J. Raj, S. D. Bass, E. Beyene, N. Chug, A. Coussat, C. Curceanu, M. Dadgar, M. Das, K. Dulski, A. Gajos, M. Gorgol, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, S. Moyo, W. Mryka, S. Niedźwiecki, S. Parzych, E. Pérez del Río, L. Raczyński, S. Sharma, S. Choudhary, R. Y. Shopa, M. Silarski, M. Skurzok, E. Ł. Stępień, P. Tanty, F. T. Ardebili, K. T. Ardebili, K. V. Eliyan, W. Wiślicki
abstract
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10^-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
Optimization of the WLS design for positron emission mammography and Total-Body J-PET systems
A. Georgadze, S. Shivani, K. Tayefi Ardebili, P. Moskal
abstract
Total body positron emission tomography (PET) instruments are medical imaging devices that detect and visualize metabolic activity in the entire body. The PET scanner has a ring-shaped detector that surrounds the patient, which detects the gamma rays emitted by the tracer as it decays. Usually, these detectors are made up of scintillation crystals coupled to photodetectors that convert the light produced by the scintillation crystal into electrical signals. The Jagiellonian Positron Emission Mammograph (J-PEM) is the first J-PET prototype module based on a novel idea with a plastic scintillator and wavelength shifter (WLS). At the same time, it is a prototype module for the total-body J-PET system. J-PEM can be an effective system for the detection and diagnosis of breast cancer in its early stage by improving sensitivity. This can be achieved using superior timing properties of plastic scintillators and combined with the WLS sheets readout. In this paper, we present an application of the Geant4 program for simulating optical photon transport in the J-PEM module. We aim to study the light transport within scintillator bars and WLS sheets to optimize gamma-ray hit position resolution. We simulated a pencil beam of 511 keV photons impinging the scintillator bar at different locations. For each condition, we calculated the value of the pulse height centroid and the spread of the photon distribution. Some free parameters of the simulation, like the reflectivity and the effective attenuation length in the sheet, were determined from a comparison to experimental data. Finally, we estimate the influence of the application of WLS layer in the total-body J-PET on the scatter fraction. To optimize the performance of the J-PEM module, we compared geometry with the number of WLS strips 50 and 83. It was found, that spatial resolution was 2.7 mm and 3.5 mm FWHM for 50 and 83 WLS strips respectively. Despite the better granularity, the 83-strip WLS geometry exhibits poorer resolution due to fewer photons being transmitted to the strip, resulting in large fluctuations of signal.
Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators
M. Dadgar, S. Parzych, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, K. Dulski, K. Elyan, A. Gajos, B.C. Hiesmayr, Ł. Kapłon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, S. Niedźwiecki, D. Panek, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Skurzok, E. L. Stępień, F. Tayefi Ardebili, K. Tayefi Ardebili, S. Vandenberghe, W. Wiślicki and P. Moskal
abstract
Background: Alongside the benefits of Total-Body imaging modalities, such as higher sensitivity, single-bed position, low dose imaging, etc., their final construction cost prevents worldwide utilization. The main aim of this study is to present a simulation-based comparison of the sensitivities of existing and currently developed tomographs to introduce a cost-efficient solution for
constructing a Total-Body PET scanner based on plastic scintillators.
Methods: For the case of this study, eight tomographs based on the uEXPLORER configuration with different scintillator materials (BGO, LYSO), axial field-of-view (97.4 cm and 194.8 cm), and detector configuration (full and sparse) were simulated. In addition, 8 J-PET scanners with different configurations, such as various axial field-of-view (200 cm and 250 cm), the different cross-sections of plastic scintillator, and the multiple numbers of the
plastic scintillator layers (2, 3, and 4), based on J-PET technology have been simulated by GATE software. Furthermore, Biograph Vision has been simulated to compare the results with standard PET scans. Two types of simulations have been performed. The first one with a centrally located source with a diameter of 1mm and a length of 250 cm, and the second one with the same source inside a water-filled cylindrical phantom with a diameter of 20 cm and a length of 183 cm.
Results: With regards to sensitivity, among all the proposed scanners, the ones constructed with BGO crystals give the best performance (? 350 cps/kBq at the center). The utilization of sparse geometry or LYSO crystals significantly lowers the achievable sensitivity of such systems. The J-PET design gives a similar sensitivity to the sparse LYSO crystal-based detectors while having full detector coverage over the body. Moreover, it provides uniform sensitivity over the body
with additional gain on its sides and provides the possibility for high-quality brain
imaging.
Conclusion: Taking into account not only the sensitivity but also the price of the Total-Body PET tomographs, which till now was one of the main obstacles in their widespread clinical availability, the J-PET tomography system based on plastic scintillators could be a cost-efficient alternative for Total-Body PET scanners.
Transformation of PET raw data into images for event classification using convolutional neural networks
P. Konieczka, L. Raczyński, W. Wiślicki, O. Fedoruk, K. Klimaszewski, P. Kopka, W. Krzemień, R.Y. Shopa, J. Baran, A. Coussat, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, A. Gajos, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, G. Korcyl, T. Kozik, D. Kumar, S. Niedźwiecki, S. Parzych, E. Pérez del Río, S. Sharma, S. Shivani, M. Skurzok, E.Ł. Stępień, F. Tayefi, P. Moskal
abstract
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into -dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study
K. Brzeziński, J. Baran, D. Borys, J. Gajewski, N. Chug, A. Coussat, E. Czerwiński, M. Dadgar, K. Dulski, K.V. Eliyan, A. Gajos, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, R. Kopeć, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, A.J. Lomax, K. McNamara, S. Niedźwiecki, P. Olko, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, T. Skóra, M. Skurzok, P. Stasica, E.Ł. Stępień, K. Tayefi, F. Tayefi, D.C. Weber, C. Winterhalter, W. Wiślicki, P. Moskal, A. Ruciński
abstract
Objective. The Jagiellonian positron emission tomography (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach. Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualized in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results. Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance. The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment.
Comparative studies of plastic scintillator strips with high technical attenuation length for the total-body J-PET scanner
Ł. Kapłon, J. Baran, N. Chug, A. Coussat, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, B. Hiesmayr, E. Kavya Valsan, K. Klimaszewski, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, G. Moskal, S. Niedźwiecki, D. Panek, S. Parzych, E. Pérez del Rio, L. Raczyński, A. Ruciński, S. Sharma, S. Shivani, R. Shopa, M. Silarski, M. Skurzok, E. Stępień, F. Tayefi Ardebili, K. Tayefi Ardebili, W. Wiślicki, P. Moskal
abstract
Plastic scintillator strips are considered as one of the promising solutions for the cost-effective construction of total-body positron emission tomography, (PET) system. The purpose of the performed measurements is to compare the transparency of long plastic scintillators with dimensions 6 mm x 24 mm x 1000 mm and with all surfaces polished. Six different types of commercial, general purpose, blue-emitting plastic scintillators with low attenuation of visible light were tested, namely: polyvinyl toluene-based BC-408, EJ-200, RP-408, and polystyrene-based Epic, SP32 and UPS-923A. For determination of the best type of plastic scintillator for total-body Jagiellonian positron emission tomograph (TB-J-PET) construction, emission and transmission spectra, and technical attenuation length (TAL) of blue light-emitting by the scintillators were measured and compared. The TAL values were determined with the use of UV lamp as excitation source, and photodiode as light detector. Emission spectra of investigated scintillators have maxima in the range from 420 nm to 429 nm. The BC-408 and EJ-200 have the highest transmittance values of about 90% at the maximum emission wavelength measured through a 6 mm thick scintillator strip and the highest technical attenuation length reaching about 2000 mm, allowing assembly of long detection modules for time-of-flight (TOF) J-PET scanners. Influence of the 6 mm × 6 mm, 12 mm × 6 mm, 24 mm × 6 mm cross-sections of the 1000 mm long EJ-200 plastic scintillator on the TAL and signal intensity was measured. The highest TAL value was determined for samples with 24 mm × 6 mm cross-section.
Efficiency determination of J-PET: first plastic scintillators-based PET scanner
S. Sharma, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, K. Eliyan, A. Gajos, N. Gupta-Sharma, B. C. Hiesmayr, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, Sz. Niedźwiecki, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, Shivani, R. Y. Shopa, M. Skurzok, E. Ł. Stępień, F. Tayefi, K. Tayefi , W. Wiślicki and P. Moskal
abstract
Background:
The Jagiellonian Positron Emission Tomograph is the 3-layer prototype
of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators
are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV
photons emitted in e+e- annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures
the precise labeling of the 511 keV photons.
Results:
By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70-270 keV, where it varies between 20 and 100%. In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons.
Conclusion:
A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion-beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine.
J-PET detection modules based on plastic scintillators for performing studies with positron and positronium beams
S. Sharma, J. Baran, R.S. Brusa, R. Caravita, N. Chug, A. Coussat, C. Curceanu, E. Czerwinski, M. Dadgar, K. Dulski, K. Eliyan, A. Gajos, B.C. Hiesmayr, K. Kacprzak, L. Kaplon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemien D. Kumar, S. Mariazzi, S. Niedźwiecki, L. Panasa, S. Parzych, L. Povolo, E. Perez del Rio, L. Raczynski Shivani, R.Y. Shopa, M. Skurzok, E.L. Stepien, F. Tayefi, K. Tayefi, W. Wislicki and P. Moskal
abstract
The J-PET detector, which consists of inexpensive plastic scintillators, has demonstrated its potential in the study of fundamental physics. In recent years, a prototype with 192 plastic scintillators arranged in 3 layers has been optimized for the study of positronium decays. This allows performing precision tests of discrete symmetries (C, P, T) in the decays of positronium atoms. Moreover, thanks to the possibility of measuring the polarization direction of the photon based on Compton scattering, the predicted entanglement between the linear polarization of annihilation photons in positronium decays can also be studied. Recently, a new J-PET prototype was commissioned, based on a modular design of detection units. Each module consists of 13 plastic scintillators and can be used as a stand-alone, compact and portable detection unit. In this paper, the main features of the J-PET detector, the modular prototype and their applications for possible studies with positron and positronium beams are discussed. Preliminary results of the first test experiment performed on two detection units in the continuous positron beam recently developed at the Antimatter Laboratory (AML) of Trento are also reported.
TOF MLEM Adaptation for the Total-Body J-PET with a Realistic Analytical System Response Matrix
R.Y. Shopa, J. Baran, K. Klimaszewski, W. Krzemień, L. Raczyński, W. Wiślicki, K. Brzeziński, N. Chug, A. Coussat, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, B.C. Hiesmayr, E. Kavya Valsan, G. Korcyl, T. Kozik, D. Kumar, Ł. Kapłon, G. Moskal, S. Niedźwiecki, D. Panek, S. Parzych, E. Pérez del Rio, A. Ruciński, S. Sharma, Shivani, M. Silarski, M. Skurzok, E. Stepień, F. Tayefi Ardebili, K. Tayefi Ardebili, P. Moskal
abstract
We report a study of the original image reconstruction algorithm based on the time-of-flight maximum likelihood expectation maximisation (TOF MLEM), developed for the total-body (TB) Jagiellonian PET (J-PET) scanners. The method is applicable to generic cylindrical or modular multi-layer layouts and is extendable to multi-photon imaging. The system response matrix (SRM) is represented as a set of analytical functions, uniquely defined for each pair of plastic scintillator strips used for the detection. A realistic resolution model (RM) in detector space is derived from fitting the Monte Carlo simulated emissions and detections of annihilation photons on oblique transverse planes. Additional kernels embedded in SRM account for TOF, parallax effect and axial smearing. The algorithm was tested on datasets, simulated in GATE for the NEMA IEC and static XCAT phantoms inside a 24-module 2-layer TB J-PET. Compared to the reference TOF MLEM with none or a shift-invariant RM, an improvement was observed, as evaluated by the analysis of image quality, difference images and ground truth metrics. We also reconstructed the data with additive contributions, pre-filtered geometrically and with non-TOF scatter correction applied. Despite some deterioration, the obtained results still capitalise on the realistic RM with better edge preservation and superior ground truth metrics. The envisioned prospects of the TOF MLEM with analytical SRM include its application in multi-photon imaging and further upgrade to account for the non-collinearity, positron range and other factors.
ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging
D. Borys, J. Baran, K.W. Brzezinski, J. Gajewski, N. Chug, A. Coussat, E. Czerwiński, M. Dadgar, K. Dulski, K. Valsan Eliyan, A. Gajos, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, R. Kopec, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, A. John Lomax, K. McNamara, S. Niedźwiecki, P. Olko, D. Panek, S. Parzych, E. Pérez del Río, L. Raczyński, S. Sharma, S. Shivani, R.Y. Shopa, T. Skóra, M. Skurzok, P. Stasica, E. Stępień, K. Tayefi Ardebili, F. Tayefi, D. Charles Weber, C. Winterhalter, W. Wiślicki, P. Moskal, A. Rucinski
abstract
Objective: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
Positronium imaging with the novel multiphoton PET scanner
P. Moskal, K. Dulski, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, J. Gajewski, A. Gajos, G. Grudzień, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, H. Karimi, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, P. Małczak, S. Niedźwiecki, M. Pawlik-Niedźwiecka, M. Pędziwiatr, L. Raczyński, J. Raj, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E.Ł. Stępień, M. Szczepanek, F. Tayefi, W. Wiślicki
abstract
In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient?s body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially
enhance the specificity of PET diagnostics.
Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET
R.Y. Shopa, K. Klimaszewski, P. Kopka, P. Kowalski, W. Krzemień, L. Raczyński, W. Wiślicki, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, A. Gajos, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, D. Kisielewska, G. Korcyl, N. Krawczyk, E. Kubicz, Sz. Niedźwiecki, J. Raj, S. Sharma, Shivani, E.Ł. Stępień, F. Tayefi, P. Moskal
abstract
We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back gamma-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scan- ner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 times higher in the axial direction than for the conventional 3D FBP. For real- istic 10-minute scans of NEMA IEC and XCAT, which require a trade-offbetween the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demon- strated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the recon- struction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.
Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography
P. Moskal, A. Gajos, M. Mohammed, J. Chhokar, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, M. Gorgol, J. Goworek, B. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, T. Kozik, E. Kubicz, S. Niedźwiecki, S. Parzych, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, S. Sharma, S. Choudhary, R. Shopa, A. Sienkiewicz, M. Silarski, M. Skurzok, E. Stepien, F. Tayefi, W. Wiślicki
abstract
Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remain scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron-positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by the knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without a magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with a single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10^{-4}, with an over threefold improvement on the previous measurement.
Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators
P. Moskal, P. Kowalski, R.Y. Shopa, L. Raczyński, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, A. Gajos, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, D. Kisielewska, K. Klimaszewski, P. Kopka, G. Korcyl, N. Krawczyk, W. Krzemień, E. Kubicz, Sz. Niedźwiecki, Sz. Parzych, J. Raj, S. Sharma, S. Shivani, E. Stępień, F. Tayefi, W. Wiślicki
abstract
The purpose of the presented research is the estimation of the performance characteristics of the economic total-body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMANU-2-2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips
(each with a cross-section of 6 mm times 30 mm and length of 140 or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with a diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolution (SRs) of 3.7mm (transversal) and 4.9mm (axial) are achieved. The noise equivalent count rate (NECR) peak of 630 kcps is expected at 30 kBq cc^-1. Activity concentration and the sensitivity at the center amount to 38 cps kBq^-1. The scatter fraction (SF) is estimated to 36.2 %. The values of SF and SR are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET.With respect to the standard PET systemswithAFOVin the range from16 to 26 cm, the TBJ-PET is characterized by an increase inNECRapproximately by a factor of 4 and by the increase of the whole-body sensitivity by a factor of 12.6 to 38. The time-of-flight resolution for the TB-J-PETis expected to be at the level ofCRT=240 ps fullwidth at half-maximum. For the TB-J-PETwith an AFOVof 140 cm, an image quality of the reconstructed images of a NEMAIEC phantom was presented with a contrast recovery coefficient and a background variability parameters. The increase of the whole-body sensitivity andNECRestimated for the TB-J-PET with respect to current commercial PETsystems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners. TB-J-PETmay constitutes an economic alternative for the crystal TB-PET scanners, since plastic scintillators are much cheaper than BGO or LYSO crystals and the axial arrangement of the strips significantly reduces the costs of readout electronics and SiPMs.
The J-PET detector - a tool for precision studies of ortho-positronium decays
K. Dulski, S.D. Bass, J. Chhokar, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, J. Gajewski, A. Gajos, M. Gorgol, R. Del Grande, B.C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, D. Kisielewska, K. Klimaszewski, P. Kopka, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, P. Małczak, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, M. Pędziwiatr, L. Raczyński7, J. Raj, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E. Ł. Stępień, F. Tayefi, W. Wiślicki, B. Zgardzińska, P. Moskal
abstract
The J-PET tomograph is constructed from plastic scintillator strips arranged axially in concentric cylindrical layers. It enables investigations of positronium decays by measurement of the time, position, polarization and energy deposited by photons in the scintillators, in contrast to studies conducted so far with crystal and semiconductor based detection systems where the key selection of events is based on the measurement of the photons energies. In this article we show that the J-PET tomography system constructed solely from plastic scintillator detectors is capable of exclusive measurements of the decays of ortho-positronium atoms. We present the first positronium production results and its lifetime distribution measurements. The obtained results prove the capability of the J-PET tomograph for (i) fundamental studies of positronium decays (in particular test of discrete symmetries in purely leptonic systems), (ii) positron annihilation lifetime spectroscopy, as well as (iii) molecular imaging diagnostics and (iv) observation of entanglement
3D TOF-PET image reconstruction using total variation regularization
L. Raczyński, W. Wiślicki, K. Klimaszewski, W. Krzemień, P. Kopka, P. Kowalski, R. Y. Shopa, M. Bała, J. Chhokar, C. Curceanu, E. Czerwinski, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, R. Del Grande, B. Hiesmayr, B. Jasińska, K. Kacprzak, L. Kapłon, D. Kisielewska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, S. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, J. Raj, K. Rakoczy, A. Ruciński, S. Sharma, S. Shivani, M. Silarski, M. Skurzok, E.Ł. Stepień, B. Zgardzińska, P. Moskal
abstract
In this paper we introduce a semi-analytic algorithm for 3-dimensional image reconstruction for positron emission tomography (PET). The method consists of the back-projection of the acquired data into the most likely image voxel according to time-of-flight (TOF) information, followed by the filtering step in the image space using an iterative optimization algorithm with a total variation (TV) regularization. TV regularization in image space is more computationally efficient than usual iterative optimization methods for PET reconstruction with a full system matrix that uses TV regularization. The efficiency comes from the one-time TOF back-projection step that might also be described as a reformatting of the acquired data. An important aspect of our work concerns the evaluation of the filter operator of the linear transform mapping an original radioactive tracer distribution into the TOF back-projected image. We obtain concise, closed-form analytical formula for the filter operator. The proposed method is validated with the Monte Carlo simulations of the NEMA IEC phantom using a one-layer, 50 cm-long cylindrical device called Jagiellonian PET scanner. The results show a better image quality compared with the reference TOF maximum likelihood expectation maximization algorithm.
Synchronisation and calibration of the 24-modules J-PET prototype with 300 mm axial field of view
P. Moskal, T. Bednarski, Sz. Niedźwiecki, M. Silarski, E. Czerwiński, T. Kozik, J. Chhokar, M. Bała, C. Curceanu, R. Del Grande, M. Dadgar, K. Dulski, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, D. Kisielewska, K.Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, L. Raczyński, S. Sharma, Shivani, R. Y. Shopa, M. Skurzok, E. Stępień, W. Wiślicki, B. Zgardzińska
abstract
Research conducted in the framework of the J-PET project aims to develop a cost-effective total-body positron emission tomography scanner. As a first step on the way to construct a full-scale J-PET tomograph from long strips of plastic scintillators, a 24-strip prototype was built and tested. The prototype consists of detection modules arranged axially forming a cylindrical diagnostic chamber with an inner diameter of 360 mm and an axial field-of-view of 300 mm. Promising perspectives for a low-cost construction of a total-body PET scanner are opened due to an axial arrangement of strips of plastic scintillators, which have a small light attenuation, superior timing properties, and the possibility of cost-effective increase of the axial field-of-view. The presented prototype comprises dedicated solely digital front-end electronic circuits and a triggerless data acquisition system which required development of new calibration methods including time, thresholds and gain synchronization. The system and elaborated calibration methods including first results of the 24-module J-PET prototype are presented and discussed. The achieved coincidence resolving time equals to CRT = 490 +- 9 ps. This value can be translated to the position reconstruction accuracy s(Dl) = 18 mm which is fairly position-independent Keywords: positron emission tomography, plastic scintillators, J-PET.
Performance assessment of the 2gamma positronium imaging with the total-body PET scanners
P. Moskal, D. Kisielewska, Z. Bura, C. Chhokar, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, R. Del Grande, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, A. Kamińska, Ł. Kapłon, H. Karimi, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, T. Kozik, E. Kubicz, P. Małczak, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, M. Pędziwiatr, L. Raczyński, J. Raj, A. Ruciński, S. Sharma, Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, E. Ł. Stępień, S. Vandenberghe, W. Wiślicki, B. Zgardzińska
abstract
In living organisms the positron-electron annihilation (occurring during the PET imaging) proceeds in about 30% via creation of a metastable ortho-positronium atom. In the tissue, due to the pick-off and conversion processes, over 98% of ortho-positronia annihilate into two 511~keV photons. In this article we assess the feasibility for reconstruction of the mean ortho-positronium lifetime image based on annihilations into two photons. The main objectives of this work include: (i) estimation of the sensitivity of the total-body PET scanners for the ortho-positronium mean lifetime imaging using 2gamma annihilations, and (ii) estimation of the spatial and time resolution of the ortho-positronium image as a function of the coincidence resolving time (CRT) of the scanner. Simulations are conducted assuming that radiopharmaceutical is labelled with 44Sc isotope emitting one positron and one prompt gamma. The image is reconstructed on the basis of triple coincidence events. The ortho-positronium lifetime spectrum is determined for each voxel of the image. Calculations were performed for cases of total-body detectors build of (i) LYSO scintillators as used in the EXPLORER PET, and (ii) plastic scintillators as anticipated for the cost-effective total-body J-PET scanner. To assess the spatial and time resolution the three cases were considered assuming that CRT is equal to 140ps, 50ps and 10ps. The estimated total-body PET sensitivity for the registration and selection of image forming triple coincidences is larger by a factor of 12.2 (for LYSO PET) and by factor of 4.7 (for plastic PET) with respect to the sensitivity for the standard 2gamma imaging by LYSO PET scanners with AFOV=20cm.
Estimating relationship between the Time Over Threshold and energy loss by photons in plastic scintillators used in the J-PET scanner
S. Sharma, J. Chhokar, C. Curceanu, E. Czerwinski, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, N. Gupta-Sharma, R. Del Grande, B. C. Hiesmayr, B. Jasinska, K. Kacprzak, L. Kaplon, H. Karimi, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemien, E. Kubicz, M. Mohammed, Sz. Niedzwiecki, M. Palka, M. Pawlik-Niedzwiecka, L. Raczynski, J. Raj, A. Rucinski, Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, E. L. Stepien, W. Wislicki, B. Zgardzinska, P. Moskal
abstract
Time-Over-Threshold (TOT) technique is being used widely due to its implications in developing the multi channel readouts mainly when fast signal processing is required. Using TOT technique as a measure of energy loss instead of charge integration methods significantly reduces the signals readout cost by combining the time and energy information. Therefore, this approach can potentially be used in J-PET tomograph which is build from plastic scintillators characterized by fast light signals. The drawback in adopting this technique is lying in the non-linear correlation between input energy loss and TOT of the signal. The main motivation behind this work is to develop the relationship between TOT and energy loss and validate it with the J-PET tomograph.
The experiment was performed using the 22Na beta emitter source placed in the center of the J-PET tomograph. One can obtain primary photons of two different energies: 511 keV photon from the annihilation of positron (direct annihilation or through the formation of para-Positronim atom or pick-off process of ortho-Positronium atoms), and 1275 keV prompt photon. This allows to study the correlation between TOT values and energy loss for energy range up to 1000 keV. As the photon interacts dominantly via Compton scattering inside the plastic scintillator, there is no direct information of primary photon energy. However, using the J-PET geometry one can measure the scattering angle of the interacting photon. Since, 22Na source emits photons of two different energies, it is required to know unambiguously the energy of incident photons and its corresponding scattering angle for the estimation of energy deposition. In this work, the relationship between Time Over Threshold and energy loss by interacting photons inside the plastic scintillators used in J-PET scanner is established for a energy deposited range 100-1000 keV.
Hit-time and hit-position reconstruction in strips of plastic scintillators using multi-threshold readouts
N. G. Sharma, M. Silarski, J. Chhokar, E. Czerwinski, C. Curceanu, K. Dulski, K. Farbaniec, A. Gajos, R. Del Grande, M. Gorgol, B. C. Hiesmayr, B. Jasinska, K. Kacprzak, L. Kaplon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemien, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedzwiecki, M. Palka, M. Pawlik-Niedzwiecka, L. Raczynski, J. Raj, S. Sharma, S. Shivani, R. Y. Shopa, M. Skurzok, W. Wislicki, B. Zgardzinska, P. Moskal
abstract
In this article a new method for the reconstruction of hit-position and hit-time of photons in long scintillator detectors is investigated. This research is motivated by the recent development of the positron emission tomography scanners based on plastic scintillators. The proposed method constitutes a new way of signal processing in Multi-Voltage-Technique. It is based on the determination of the degree of similarity between the registered signals and the synchronized model signals stored in a library. The library was established for a set of well defined hit-positions along the length of the scintillator. The Mahalanobis distance was used as a measure of similarity between the two compared signals. The method was validated on the experimental data measured using two-strips J-PET prototype with dimensions of 5x9x300 mm. The obtained Time-of-Flight (TOF) and spatial resolutions amount to 325 ps (FWHM) and 25 mm (FWHM), respectively. The TOF resolution was also compared to the results of an analogous study done using Linear Fitting method. The best TOF resolution was obtained with this method at four pre-defined threshold levels which was comparable to the resolution achieved from the Mahalanobis distance at two pre-defined threshold levels. Although the algorithm of Linear Fitting method is much simpler to apply than the Mahalanobis method, the application of the Mahalanobis distance requires a lower number of applied threshold levels and, hence, decreases the costs of electronics used in PET scanner.
Development of J-PEM for Breast Cancer Detection
Shivani, E. Łuczynska, S. Heinze and P. Moskal
abstract
A detection system of the conventional PET tomograph is set-up to record data from e+e- annihilation
into two photons, each with energy of 511 keV, and to give information about the spatial density distribution of
a radiopharmaceutical in the patients body. Dedicated positron emission mammography (PEM) systems provide
a potentially high sensitivity, high-resolution, low attenuation, and lower cost alternative to whole body PET.
We have designed, built, and performed initial evaluation of a large field-of-view Jagiellonian Positron Emission
Mammography (J-PEM) system. This 3D system is based on novel idea of applying plastic scintillators to detect
annihilation photons and improving spatial resolution by utilization of wavelength shifters (WLS). In addition,
this device is being developed in view of classification of malignancy based on the possibility of positronium mean
lifetime imaging. Here we present the first results from the simulations as motivation for our investigation.
Development of J-PEM for breast cancer detection and diagnosis using positronium imaging
Shivani, E. Łuczyńska, S. Heinze, P. Moskal
abstract
The purpose of the presented investigations is to design, construct and establish the characteristic performance of the Jagiellonian Positron Emission Mammography(J-PEM), being designed for the detection and diagnosis of breast cancer. Its construction is based on a novel idea of PET tomography based on plastic scintillators and wavelength shifter (WLS) and a new concept of positronium imaging. We have prepared a simulation program based on Monte Carlo methods for optimizing the geometry and material of the J-PEM prototype. Here we present the first results from the simulations and a brief review of the state of art of breast imaging modalities and their characteristics motivating our investigation.
Feasibility study of the positronium imaging with the J-PET tomograph
P. Moskal, D. Kisielewska, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, M. Gorgol, B. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, G. Korcyl, P. Kowalski, W. Krzemień, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E. Stępień, W. Wiślicki, B. Zgardzińska
abstract
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho- positronium annihilation, as well as the possibility of positronium average lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2 ns to ~2.9 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
Simulation studies of annihilation-photon's polarisation via Compton scattering with the J-PET tomograph
N. Krawczyk, B.C. Hiesmayr, J. Chhokar, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, W. Krzemień, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, K. Rakoczy, Z. Rudy, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
J-PET is the first positron-emission tomograph (PET) constructed from plastic scintillators. It was optimized for the detection of photons from electron-positron annihilation. Such photons, having an energy of 511 keV, interact with electrons in plastic scintillators predominantly via the Compton effect. Compton scattering is at most probable at an angle orthogonal to the electric field vector of the interacting photon. Thus registration of multiple photon scatterings with J-PET enables to determine the polarization of the annihilation photons. In this contribution we present estimates on the physical limitation in the accuracy of the polarization determination of 511 keV photons with the J-PET detector.
Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector
P. Moskal, N. Krawczyk, B. C. Hiesmayr, M. Bała, C. Curceanu, E. Czerwinski, K. Dulski, A. Gajos, M. Gorgol, R. Del Grande, B. Jasinska, K. Kacprzak, L. Kapłon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczynski, J. Raj, Z. Rudy, S. Sharma, M. Silarski, Shivani, R. Y. Shopa, M. Skurzok, W. Wislicki, B. Zgardzinska
abstract
J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511keV photons via Compton scattering. For scattering angles of about 82 degree (where the best contrast for polarization measurement is theoretically predicted) we find
that the single event resolution for the determination of the polarization is about 40 degree (predominantly due to properties
of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.
A feasibility study of the time reversal violation test based on polarization of annihilation photons from the decay of ortho-Positronium with the J-PET detector
J. Raj, A. Gajos, C. Curceanu, E. Czerwiński, K. Dulski, M. Gorgol, N. Gupta-Sharma, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, K. Rakoczy, Z. Rudy, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is a novel device being developed at Jagiellonian University in Krakow, Poland based on organic scintillators. J-PET is an axially symmetric and high acceptance scanner that can be used as a multi-purpose detector system. It is well suited to pursue tests of discrete symmetries in decays of positronium in addition to medical
imaging. J-PET enables the measurement of both momenta and the polarization vectors of annihilation photons. The latter is a unique feature of the J-PET detector which allows the study of time reversal symmetry violation operator which can be constructed solely from the annihilation photons momenta before and after the scattering in the detector.
Commissioning of the J-PET detector in view of the positron annihilation lifetime spectroscopy
K. Dulski, C. Curceanu, E. Czerwiński, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, K. Rakoczy, Z. Rudy, S. Sharma, Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET device built from plastic scintillators. It is a multi-purpose detector designed for medical imaging and for studies of properties of positronium atoms in porous matter and in living organisms. In this article we report on the commissioning of the J-PET detector in view of studies of positronium decays. We present results of analysis of the positron lifetime measured in the porous polymer. The obtained results prove that J-PET is capable of performing simultaneous imaging of the density distribution of annihilation points as well as positron annihilation lifetime spectroscopy.
Feasibility study of the time reversal symmetry tests in decay of metastable positronium atoms with the J-PET detector
A. Gajos, C. Curceanu, E. Czerwinski, K. Dulski, M. Gorgol, N. Gupta-Sharma, B.C. Hiesmayr, B. Jasinska, K. Kacprzak, L. Kaplon, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, M. Mohammed, Sz Niedzwiecki, M. Paalka, M. Pawlik-Niedzwiecka, L. Raczynski, J. Raj, Z. Rudy, S. Sharma, Shivani, R. Shopa, M. Silarski, M. Skurzok, W. Wislicki, B. Zgardzinska, M. Zielinski, P. Moskal
abstract
This article reports on the feasibility of testing of the symmetry under reversal in time in a purely leptonic system constituted by positronium atoms using the J-PET detector. The present state of T symmetry tests is discussed with an emphasis on the scarcely explored sector of leptonic systems. Two possible strategies of searching for manifestations of T violation in non-vanishing angular correlations of final state observables in the decays of metastable triplet states of positronium available with J-PET are proposed and discussed. Results of a pilot measurement with J-PET and assessment of its performance in reconstruction of three-photon decays are shown along with an analysis of its impact on the sensitivity of the detector for the determination of T -violation sensitive observables.
Estimating the NEMA characteristics of the J-PET tomograph using the GATE package
P. Kowalski, W. Wiślicki, R.Y. Shopa, L. Raczyński, K. Klimaszewski, C. Curcenau, E. Czerwiński, K. Dulski, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. Hiesmayr, B. Jasińska, Ł. Kapłon, D. Kisielewska-Kamińska, G. Korcyl, T. Kozik, W. Krzemień, E. Kubicz, M. Mohammed, S. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, J. Raj, K. Rakoczy, Z. Rudy, S. Sharma, S. Shivani, M. Silarski, M. Skurzok, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
A novel whole-body positron emission tomography (PET) system based on plastic scintillators is
developed by the J-PET Collaboration. It consists of plastic scintillator strips arranged axially in the
form of a cylinder, allowing the cost-effective construction of the total-body PET system. In order to
determine the properties of the scanner prototype and optimize its geometry, advanced computer
simulations were performed using the GATE (Geant4 application for tomographic emission)
software.
The spatial resolution, sensitivity, scatter fraction and noise equivalent count rate were estimated
according to the National Electrical Manufacturers Association norm, as a function of the length
of the tomograph, the number of detection layers, the diameter of the tomographic chamber and
for various types of applied readout. For the single-layer geometry with a diameter of 85 cm, a strip
length of 100 cm, a cross-section of 4 mm × 20 mm and silicon photomultipliers with an additional
layer of wavelength shifter as the readout, the spatial resolution (full width at half maximum) in
the centre of the scanner is equal to 3 mm (radial, tangential) and 6 mm (axial). For the analogous
double-layer geometry with the same readout, diameter and scintillator length, with a strip crosssection
of 7 mm × 20 mm, a noise equivalent count rate peak of 300 kcps was reached at 40 kBq cc?1
activity concentration, the scatter fraction is estimated to be about 35% and the sensitivity at the
centre amounts to 14.9 cps kBq?1. Sensitivity profiles were also determined.
A Method to Produce Linearly Polarized Positrons and Positronium Atoms with the J-PET Detector
M. Mohammed, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B.C. Hiesmayr, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, L. Raczyński, J. Raj, Z. Rudy, N.G. Sharma, S. Sharma, Shivani, M. Skurzok, M. Silarski, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
A method for creating linearly polarized positrons and ortho-positronium (o-Ps) atoms with the J-PET detector is presented. The unique geometry and properties of the J-PET tomography enable one to design a positron source such that the quantization axis for the estimation of the linear polarization of produced o-Ps can be determined on the event by event basis in a direction of the positron motion. We intend to use 22Na or other beta+ decay isotopes as a source of polarized positrons. Due to the parity violation in the beta decay, the emitted positrons are longitudinally polarized. The choice of the quantization axis is based on the known position of the positron emitter and the reconstructed position of the positronium annihilation. We show that the J-PET tomography is equipped with all needed components.
Preliminary Studies of J-PET Detector Spatial Resolution
M. Pawlik-Niedźwiecka, S. Niedźwiecki, D. Alfs, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. C. Hiesmayr, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pałka, L. Raczyński, J. Raj, Z. Rudy, Shivani, M. Silarski, M. Skurzok, N.G. Sharma, S. Sharma, R.Y. Shopa, A. Strzelecki, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
The J-PET detector, based on long plastic scintillator strips, was recently constructed at the Jagiellonian University. It consists of 192 modules axially arranged into three layers, read out from both sides by digital constant-threshold front-end electronics. This work presents preliminary results of measurements of the spatial resolution of the J-PET tomograph performed with 22Na source placed at selected position inside the detector chamber.
Analysis procedure of the positronium lifetime spectra for the J-PET detector
K. Dulski , B. Zgardzińska , P. Białas , C. Curceanu E. Czerwiński , A. Gajos , B. Głowacz , M. Gorgol , B. C. Hiesmayr , B. Jasińska , D. Kisielewska-Kamińska , G. Korcyl , P. Kowalski , T. Kozik , N. Krawczyk , W. Krzemień , E. Kubicz , M. Mohammed , M. Pawlik-Niedźwiecka, S. Niedźwiecki , M. Pałka , L. Raczyński , J. Raj , Z. Rudy , N. G. Sharma, S. Sharma, Shivani, R. Y. Shopa, M. Silarski , M. Skurzok , A. Wieczorek , W. Wiślicki , M. Zieliński , P. Moskal
abstract
Positron Annihilation Lifetime Spectroscopy (PALS) has shown to be a powerful tool to study the nanostructures of porous materials. Positron Emissions Tomography (PET) are devices allowing imaging of metabolic processes e.g. in human bodies. A newly developed device, the J-PET (Jagiellonian PET), will allow PALS in addition to imaging, thus combining both analyses providing new methods for physics and medicine. In this contribution we present a computer program that is compatible with the J-PET software. We compare its performance with the standard program LT 9.0 by using PALS data from hexane measurements at different temperatures. Our program is based on an iterative procedure, and our fits prove that it performs as good as LT 9.0.
Time calibration of the J-PET detector
M. Skurzok, M. Silarski, D. Alfs, P. Bialas, Shivani, C. Curceanu , E. Czerwinski , K. Dulski , A. Gajos, B. G lowacz , M. Gorgol, B. C. Hiesmayr, B. Jasinska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik , N. Krawczyk, W. Krzemien, E. Kubicz , M. Mohammed, M. Pawlik-Niedzwiecka, S. Niedzwiecki, M. Palka, L. Raczynski , J. Raj, Z. Rudy, N. G. Sharma, S. Sharma , R. Y. Shopa , A. Wieczorek, W. Wislicki , B. Zgardzinska, M. Zielinski, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) project carried out in the Institute of Physics of the Jagiellonian University is focused on construction and tests of the first prototype of PET scanner for medical diagnostic which allows for the simultaneous 3D imaging of the whole human body using organic scintillators. The J-PET prototype consists of 192 scintillator strips forming three cylindrical layers which are optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolutions. In this article we present time calibration and synchronization of the whole J-PET detection system by irradiating each single detection module with a 22Na source and a small detector providing common reference time for synchronization of all the modules.