SIDDHARTA-2 apparatus for kaonic atoms research on the DAFNE collider
F. Sirghi, F. Sgaramella, L. Abbene, C. Amsler, M. Bazzi, G. Borghi, D. Bosnar, M. Bragadireanu, A. Buttacavoli, M. Carminati, M. Cargnelli, A. Clozza, G. Deda, L. De Paolis, R. Del Grande, K. Dulski, L. Fabbietti, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Ohnishi, K. Piscicchia, F. Principato, A. Scordo, D. Sirghi, M. Skurzok, M. Silarski, A. Spallone, K. Toho, L. Toscano, M. Tüchler, O. Vazquez Doce, C. Yoshida, J. Zmeskal, C. Curceanu
abstract
SIDDHARTA-2 represents a state-of-the-art experiment designed to perform dedicated measurements of kaonic atoms, which are particular exotic atom configurations composed of a negatively charged kaon and a nucleus. Investigating these atoms provides an exceptional tool to comprehend the strong interactions in the non-perturbative regime involving strangeness. The experiment is installed at the DAFNE electron-positron collider, of the INFN National Laboratory of Frascati (INFN-LNF) in Italy, aiming to perform the first-ever measurement of the 2p->1s X-ray transitions in kaonic deuterium, a crucial step towards determining the isospin-dependent antikaon-nucleon scattering lengths. Based on the experience gained with the previous SIDDHARTA experiment, which performed the most precise measurement of the kaonic hydrogen 2p->1s X-ray transitions, the present apparatus has been upgraded with innovative Silicon Drift Detectors (SDDs), distributed around a cryogenic gaseous target placed in a vacuum chamber at a short distance above the interaction region of the collider. We present a comprehensive description of the SIDDHARTA-2 setup including the optimization of its various components during the commissioning phase of the collider.
Non-maximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner
P. Moskal, D. Kumar, S. Sharma, E.Y. Beyene, N. Chug, A. Coussat, C. Curceanu, E. Czerwinski, M. Das, K. Dulski, M. Gorgol, B. Jasinska, K. Kacprzak, T. Kaplanoglu, L. Kaplon, K. Klimaszewski, T. Kozik, E. Lisowski, F. Lisowski, W. Mryka, S. Niedzwiecki, S. Parzych, E.P. del Rio, L. Raczynski, M. Radler, R.Y. Shopa, M. Skurzok, E. L. Stepien, P. Tanty, K. Tayefi Ardebili, K. Valsan Eliyan, W. Wislicki
abstract
In the state-of-the-art Positron Emission Tomography (PET), information about the polarization of annihilation photons is not available. Current PET systems track molecules labeled with positron-emitting radioisotopes by detecting the propagation direction of two photons from positron-electron annihilation. However, annihilation photons carry more information than just the site where they originated. Here we present a novel J-PET scanner built from plastic scintillators, in which annihilation photons interact predominantly via the Compton effect, providing information about photon polarization in addition to information on photon direction of propagation. Theoretically, photons from the decay of positronium in a vacuum are maximally entangled in polarization. However, in matter, when the positron from positronium annihilates with the electron bound to the atom, the question arises whether the photons from such annihilation are maximally entangled. In this work, we determine the distribution of the relative angle between polarization orientations of two photons from positron-electron annihilation in a porous polymer. Contrary to prior results for positron annihilation in aluminum and copper, where the strength of observed correlations is as expected for maximally entangled photons, our results show a significant deviation. We demonstrate that in porous polymer, photon polarization correlation is weaker than for maximally entangled photons but stronger than for separable photons. The data indicate that more than 40% of annihilations in Amberlite resin lead to a non-maximally entangled state. Our result indicates the degree of correlation depends on the annihilation mechanism and the molecular arrangement. We anticipate that the introduced Compton interaction-based PET system opens a promising perspective for exploring polarization correlations in PET as a novel diagnostic indicator.
Realistic Total-Body J-PET Geometry Optimization--Monte Carlo Study
J. Baran, W. Krzemień, L. Raczyński, M. Bała, A. Coussat, S. Parzych, N. Chug, E. Czerwiński, C. Oana Curceanu, M. Dadgar, K. Dulski, K. Eliyan, J. Gajewski, A. Gajos, B. Hiesmayr, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, G. Korcyl, T. Kozik, D. Kumar, S. Niedźwiecki, D. Panek, E. Perez del Rio, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Skurzok, E. Stępień, F. Tayefiardebili, K. Tayefiardebili, W. Wiślicki, P. Moskal
abstract
Total-Body PET imaging is one of the most promising newly introduced modalities in the medical diagnostics. State-of-the-art PET scanners use inorganic scintillators such as L(Y)SO or BGO, however, those technologies are very expensive, prohibitng the broad total-body PET applications. We present the comparative studies of performance characteristics of the cost-effective Total-Body PET scanners using Jagiellonian PET (J-PET) technology that is based on plastic scintillators. Here, we investigated in silico five realistic Total-Body scanner geometries, varying the number of rings, scanner radius, and distance between the neighbouring rings. Monte Carlo simulations of two NEMA phantoms (2-meter sensitivity line source and image quality) and the anthropomorphic XCAT phantom, were used to assess the performance of the tested geometries. We compared the sensitivity profiles and we performed the quantitative analysis of the reconstructed images by using the quality metrics such as contrast recovery coefficient, background variability and root mean squared error. The optimal scanner design was selected for the first Total-Body J-PET scanner configuration.
A feasibility study of the measurement of kaonic lead X-rays at DAFNE for the precise determination of the charged kaon mass
D. Bosnar, L. Abbene, C. Amsler, F. Artibani, M. Bazzi, A. Buttacavoli, M. Carminati, M. Cargnelli, A. Clozza, F. Clozza, G. Deda, L. De Paolis, R. Del Grande, K. Dulski, L. Fabbietti, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, M. Makek S. Manti, J. Marton, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Ohnishi, K. Piscicchia, A. Scordo, F. Sgaramella, D. Sirghi, F. Sirghi, M. Skurzok, M. Silarski, A. Spallone, K. Toho, M. Tüchler, O. Vazquez Doce, J. Zmeskal, C. Curceanu
abstract
An HPGe detector equipped with a transistor reset preamplifier and readout with a CAEN DT5781 fast pulse
digitizer was employed in the measurement of X-rays from kaonic lead at the DAFNE e+e- collider at the
Laboratori Nazionali di Frascati of INFN. A thin scintillator in front of a lead target was used to select kaons
impinging on it and to form the trigger for the HPGe detector. We present the results of the kaonic lead
feasibility measurement, where we show that the resolution of the HPGe detector in regular beam conditions
remains the same as that without the beam and that a satisfactory background reduction can be achieved.
This measurement serves as a test bed for future dedicated kaonic X-rays measurements for the more precise
determination of the charged kaon mass.
Positronium image of the human brain in vivo
P. Moskal, J. Baran, S. Bass, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, M. Das, K. Dulski, K.V. Eliyan, K. Fronczewska, A. Gajos, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, M. Kobylecka, G. Korcyl, T. Kozik, W. Krzemień, K. Kubat, D. Kumar, J. Kunikowska, J. Mączewska, W. Migdał, G. Moskal, W. Mryka, S. Niedźwiecki, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, F. Tayefi, K. Tayefi, P. Tanty, W. Wiślicki, L. Królicki, E. Ł. Stępień
abstract
Positronium is abundantly produced within the molecular voids of a patient?s body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
The SIDDHARTA-2 experiment for high precision kaonic atoms X-ray spectroscopy at DAFNE
F. Sgaramella, L. Abbene, C. Amsler, F. Artibani, M. Bazzi, D. Bosnar, M. Bragadireanu, A. Buttacavoli, M. Cargnelli, M. Carminati, A. Clozza, F. Clozza, G. Deda, R. Del Grande, L. De Paolis, K. Dulski, L. Fabbietti, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Ohnishi, K. Piscicchia, F. Principato, A. Scordo, M. Silarski, D. Sirghi, F. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tüchler, O. Vazquez Doce, J. Zmeskal, C. Curceanu
abstract
High precision X-ray spectroscopy of light kaonic atoms provides
valuable information on kaon-nucleus interaction at threshold, allowing to investigate
the strong interaction in the strangeness sector at the low-energy frontier. The
SIDDHARTA-2 experiment at the DAFNE collider of INFN-LNF is performing the
challenging measurement of the kaonic deuterium 2p->1 s transition which together
with the kaonic hydrogen measurement performed by SIDDHARTA, will allow to
extract the isospin-dependent antikaon-nucleon scattering lengths. To achieve this
goal, the optimization of the setup to maximize the signal over background ratio
is a crucial step. This paper presents the SIDDHARTA-2 experiment and its optimization
through the first observation of kaonic neon transitions. The excellent
electromagnetic background reduction factor (~10^4) paves the way not only to the
measurement of kaonic deuterium, but also to a new era of selected kaonic atom
measurements along the periodic table.
The Odyssey of kaonic atoms studies at the DAFNE collider: From DEAR to SIDDHARTA-2
F. Artibani, F. Clozza, M. Bazzi, C. Capoccia, A. Clozza, L. De Paolis, K. Dulski, C. Guaraldo, M. Iliescu, A. Khreptak, S. Manti, F. Napolitano, O. Vazquez Doce, A. Scordo, F. Sgaramella, F. Sirghi, A. Spallone, M. Cargnelli, J. Marton, M. Tüchler, J. Zmeskal, L. Abbene, A. Buttacavoli, F. Principato, D. Bosnar, I. Friščić, M. Bragadireanu, G. Borghi, M. Carminati, G. Deda, C. Fiorini, R. Del Grande, M. Iwasaki, P. Moskal, S. Niedźwiecki, M. Silarski, M. Skurzok, H. Ohnishi, K. Toho, D. Sirghi, K. Piscicchia, C.O. Curceanu
abstract
In this paper, an overview of kaonic atoms studies from the late 90s to nowadays at the DAFNE collider at INFN-LNF is presented. Experiments on kaonic atoms are an important tool to test and optimize phenomenological models on the low-energy strong interaction. Since its construction, the DAFNE collider has represented an ideal machine to perform kaonic atoms measurements, thanks to the unique beam of kaons coming from the Phi_s produced in the collider decays. The DEAR and SIDDHARTA experiments achieved the precise evaluation of the shift and width of the 2p -> 1s transition in kaonic hydrogen due to the strong interaction, and thus provided a measurement strictly linked to isospin-dependent antikaon-nucleon scattering lengths. To fully disentangle the iso-scalar and iso-vector scattering lengths, the measurement of kaonic deuterium is necessary as well. The SIDDHARTA-2 experiment is now taking data at the DAFNE collider with the aim to fulfill the need of this measurement, and therefore provide important information to the various phenomenological models on low-energy strong interactions with strangeness. The SIDDHARTA-2 Collaboration is also exploring the possibility to perform future kaonic atoms experiments, developing X-ray detector systems beyond the current stateof-art. These measurements are crucial for a deeper understanding of the kaon interactions with nuclei and for solving the kaon mass ''puzzle''.
First measurement of kaonic helium-4 M-series transitions
F. Sgaramella, D. Sirghi, L. Abbene, F. Artibani, M. Bazzi, D. Bosnar, M. Bragadireanu, A. Buttacavoli, M. Cargnelli, M. Carminati, A. Clozza, F. Clozza, G. Deda, R. Del Grande, L. De Paolis, K. Dulski, L. Fabbietti, C. Fiorini, I. Friscic, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedzwiecki, H. Ohnishi, K. Piscicchia, F. Principato, A. Scordo, M. Silarski, F. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tuchler, O. Vazquez Doce, C. Yoshida, J. Zmeskal, C. Curceanu
abstract
In this paper we present the results of a new kaonic helium-4 measurement with a 1.37 g/l gaseous target by the SIDDHARTA-2 experiment at the DAFNE collider. We measured, for the first time, the energies and yields of three transitions belonging to the Mseries. Moreover, we improved by a factor about three, the statistical precision of the 2p level energy shift and width induced by the strong interaction, obtaining the most precise measurement for gaseous kaonic helium, and measured the yield of the L_alpha transition at the employed density, providing a new experimental input to investigate the density dependence of kaonic atoms transitions yield.
Feasibility of the J-PET to monitor range oftherapeutic proton beams
J. Baran, D. Borys, K. Brzeziński, J. Gajewski, M. Silarski, N. Chug, A. Coussat, E. Czerwiński, M. Dadgar, K. Dulski, K.V. Eliyan, A. Gajos, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, R. Kopeć, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, A.J. Lomax, K. McNamara, S. Niedźwiecki, P. Olko, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, M. Simbarashe, S. Sharma, Shivani, R.Y. Shopa, T. Skóra, M. Skurzok, P. Stasica, E.Ł. Stępień, K. Tayefi, F. Tayefi, D.C. Weber, C. Winterhalter, W. Wiślicki, P. Moskal, A. Ruciński
abstract
Objective: The aim of this work is to investigate the feasibility of the JagiellonianPositron Emission Tomography (J-PET) scanner for intra-treatment proton beamrange monitoring. Approach: The Monte Carlo simulation studies with GATE and PET imagereconstruction with CASToR were performed in order to compare six J-PET scannergeometries (three dual-heads and three cylindrical). We simulated proton irradiationof a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out BraggPeak (SOBP) of various ranges. The sensitivity and precision of each scanner werecalculated, and considering the setup?s cost-effectiveness, we indicated potentiallyoptimal geometries for the J-PET scanner prototype dedicated to the proton beamrange assessment. Main results: The investigations indicate that the double-layer cylindrical andtriple-layer double-head configurations are the most promising for clinical application.We found that the scanner sensitivity is of the order of 10?5coincidences per primaryproton, while the precision of the range assessment for both SPB and SOBP irradiationplans was found below 1 mm. Among the scanners with the same number of detectormodules, the best results are found for the triple-layer dual-head geometry. Significance: We performed simulation studies demonstrating that the feasibilityof the J-PET detector for PET-based proton beam therapy range monitoring ispossible with reasonable sensitivity and precision enabling its pre-clinical tests in theclinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometryconfigurations seem promising for the future clinical application. Experimental testsare needed to confirm these findings.
Characterization of the SIDDHARTA-2 Setup via the Kaonic Helium Measurement
F. Sgaramella, A. Clozza, L. Abbene, F. Artibani, M. Bazzi, G. Borghi, M. Bragadireanu, A. Buttacavoli, M. Cargnelli, M. Carminati, G. Deda, R. Del Grande, L. De Paolis, K. Dulski, C. Fiorini, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedzwiecki, H. Ohnishi, K. Piscicchia, F. Principato, A. Scordo, M. Silarski, D. Sirghi, F. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tuchler, J. Zmeskal, C. Curceanu
abstract
The aim of the SIDDHARTA-2 experiment is to perform the first measurement ever of the width and shift induced by the strong interaction to the 2????->1????
energy transition of kaonic deuterium. This ambitious goal implies a challenging task due to the very low X-ray yield of kaonic deuterium, which is why an accurate and thorough characterization of the experimental apparatus is mandatory before starting the data-taking campaign. Helium-4 is an excellent candidate for this characterization since it exhibits a high yield in particular for the 3????->2????
transition, roughly 100 times greater than that of the kaonic deuterium. The ultimate goal of the work reported in this paper is to study the performances of the full experimental setup in view of the kaonic deuterium measurement. This is carried out by measuring the values of the shift and the width for the 3?????2????
energy transition of kaonic helium-4, induced by the strong interaction. The values obtained for these quantities, for a total integrated luminosity of ~31/pb, are epsilon_2????=2.0+-1.2(stat)+-1.5(syst)eV
and Gamma_2????=1.9+-5.7(stat)+-0.7(syst)eV. The results, compared to the value of the shift measured by the SIDDHARTA experiment epsilon_2????=0+-6(stat)+-2(syst)eV, show a net enhancement of the resolution of the apparatus, providing strong evidence of the potential to perform the challenging measurement of the kaonic deuterium.
Feasibility studies for imaging e+e- annihilation with modular multi-strip detectors
S. Sharma, L. Povolo, S. Mariazzi, G. Korcyl, K. Kacprzak, D. Kumar, S. Niedzwiecki, J. Baran, E. Beyene, R. S. Brusa, R. Caravita, N. Chug, A. Coussat, C. Curceanu, E. Czerwinski, M. Dadgar, M. Das, K. Dulski, K. Eliyan, A. Gajos, N. Gupta, B. C. Hiesmayr, L. Kaplon, T. Kaplanoglu, K. Klimaszewski, P. Konieczka, T. Kozik, M. K. Kozani, W. Krzemien, S. Moyo, W. Mryka, L. Penasa, S. Parzych, E. Perez Del Rio, L. Raczynski, R. Y. Shopa, M. Skurzok, E. L. Stepien, P. Tanty, F. Tayefi, K. Tayefi, W. Wislicki, P. Moskal
abstract
Studies based on imaging the annihilation of the electron (e-) and its antiparticle positron (e+) open up several interesting applications in nuclear medicine and fundamental research. The annihilation process involves both the direct conversion of ee into photons and the formation of their atomically bound state, the positronium atom (Ps), which can be used as a probe for fundamental studies. With the ability to produce large quantities of Ps, manipulate them in long-lived Ps states, and image their annihilations after a free fall or after passing through atomic interferometers, this purely leptonic antimatter system can be used to perform inertial sensing studies in view of a direct test of Einstein equivalence principle. It is envisioned that modular multistrip detectors can be exploited as potential detection units for this kind of studies. In this work, we report the results of the first feasibility study performed on a e beamline using two detection modules to evaluate their reconstruction performance and spatial resolution for imaging ee annihilations and thus their applicability for gravitational studies of Ps.
First positronium image of the human brain in vivo
P. Moskal, J. Baran, S. Bass, J. Choiński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, M. Das, K. Dulski, K.V. Eliyan, K. Fronczewska, A. Gajos, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, M. Kobylecka, G. Korcyl, T. Kozik, W. Krzemień, K. Kubat, D. Kumar, J. Kunikowska, J. Mączewska, W. Migdał, G. Moskal, W. Mryka, S. Niedźwiecki, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, F. Tayefi, K. Tayefi, P. Tanty, W. Wiślicki, L. Królicki, E. Ł. Stępień
abstract
Positronium, an unstable atom consisting of an electron and a positron, is abundantly produced within the molecular voids of a patient?s body during positron emission tomography (PET) diagnosis. Its properties, such as its average lifetime between formation and annihilation into photons, dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen molecules. However, the diagnostic information that positronium may deliver about early molecular alterations remains unavailable in clinics with state-of-the-art PET scanners.
This study presents the first in vivo images of positronium lifetime in humans. We developed a dedicated J-PET system with multiphoton detection capability for imaging. The measurements of positronium lifetime were performed on a patient with a glioblastoma tumor in the brain. The patient was injected intratumorally with the 68Ga radionuclide attached to Substance-P, which accumulates in glioma cells, and intravenously with 68Ga attached to the PSMA-11 ligand, which is selective to glioma cells and salivary glands. The 68Ga radionuclide is routinely used in PET for detecting radiopharmaceutical accumulation and was applied for positronium imaging because it can emit an additional prompt gamma. The prompt gamma enables the determination of the time of positronium formation, while the photons from positronium annihilation were used to reconstruct the place and time of its decay. The determined positronium mean lifetime in glioblastoma cells is shorter than in salivary glands, which in turn is shorter than in healthy brain tissues, demonstrating for the first time that positronium imaging can be used to diagnose disease in vivo. This study also demonstrates that if current total-body PET systems were equipped with multiphoton detection capability and the 44Sc radionuclide was applied, it would be possible to perform positronium imaging at 6500 times greater sensitivity than achieved in this research. Therefore, it is anticipated that positronium imaging has the potential to bring a new quality of cancer diagnosis in clinics.
SPLIT: Statistical Positronium Lifetime Image reconstruction via time-Thresholding
B. Huang, T. Li, G, Arino-Estrada, K. Dulski, R.Y. Shopa, P. Moskal, E. Stępień, J. Qi
abstract
Positron emission tomography (PET) is a widely utilized medical imaging modality that uses positron-emitting radiotracers to visualize biochemical processes in a living body. The spatiotemporal distribution of a radiotracer is estimated by detecting the coincidence photon pairs generated through positron annihilations. In human tissue, about 40% of the positrons form positroniums prior to the annihilation. The lifetime of these positroniums is influenced by the microenvironment in the tissue and could provide valuable information for better understanding of disease progression and treatment response. Currently, there are few methods available for reconstructing high-resolution lifetime images in practical applications. This paper presents an efficient statistical image reconstruction method for positronium lifetime imaging (PLI). We also analyze the random triple-coincidence events in PLI and propose a correction methodfor random events, which is essential for real applications. Both simulation andexperimental studies demonstrate that the proposed method can produce lifetime images with high numerical accuracy, low variance, and resolution comparable to that of the activity images generated by a PET scanner with currently available time-of-flight resolution.
Discrete symmetries tested at 10^-4 precision using linear polarization of photons from positronium annihilations
P. Moskal, E. Czerwiński, J. Raj, S. D. Bass, E. Beyene, N. Chug, A. Coussat, C. Curceanu, M. Dadgar, M. Das, K. Dulski, A. Gajos, M. Gorgol, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, S. Moyo, W. Mryka, S. Niedźwiecki, S. Parzych, E. Pérez del Río, L. Raczyński, S. Sharma, S. Choudhary, R. Y. Shopa, M. Silarski, M. Skurzok, E. Ł. Stępień, P. Tanty, F. T. Ardebili, K. T. Ardebili, K. V. Eliyan, W. Wiślicki
abstract
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10^-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
The SIDDHARTA-2 Veto-2 system for X-ray spectroscopy of kaonic atoms at DAFNE
M. Tüchler, C. Amsler, M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, L. De Paolis, K. Dulski, L. Fabbietti, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton1, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Ohnishi, K. Piscicchia, Y. Sada, A. Scordo, F. Sgaramella, H. Shi, M. Silarski, D. Sirghi, F. Sirghi, M. Skurzok, A. Spallone, K. Toho, O. Vazquez Doce, E. Widmann, C. Yoshida, J. Zmeskal and C. Curceanu
abstract
The Veto-2 is a fundamental component of a multiple-stage veto system for the SIDDHARTA-2 experiment installed at the DAFNE collider at INFN-LNF in Italy. It was developed to improve the signal-to-background ratio for the challenging measurement of X-ray transitions to the fundamental level in kaonic deuterium. Its purpose is the suppression of hadronic background in the form of Minimum Ionizing Particles by using the topological correlation between signals in the X-ray and Veto-2 detectors. The Veto-2 system consists of a barrel of plastic scintillators read out by Silicon Photomultipliers. The system performed its first successful test run within the apparatus with a helium-4 target in 2022. The efficiency of the Veto-2 was determined and found to be 0.62 +- 0.01. The Veto-2 improved the signal-to-background ratio for the kaonic helium-4 L_alpha measurement by about 16%, which is crucial due to the low expected X-ray yield of kaonic deuterium.
Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators
M. Dadgar, S. Parzych, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, K. Dulski, K. Elyan, A. Gajos, B.C. Hiesmayr, Ł. Kapłon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, S. Niedźwiecki, D. Panek, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, M. Skurzok, E. L. Stępień, F. Tayefi Ardebili, K. Tayefi Ardebili, S. Vandenberghe, W. Wiślicki and P. Moskal
abstract
Background: Alongside the benefits of Total-Body imaging modalities, such as higher sensitivity, single-bed position, low dose imaging, etc., their final construction cost prevents worldwide utilization. The main aim of this study is to present a simulation-based comparison of the sensitivities of existing and currently developed tomographs to introduce a cost-efficient solution for
constructing a Total-Body PET scanner based on plastic scintillators.
Methods: For the case of this study, eight tomographs based on the uEXPLORER configuration with different scintillator materials (BGO, LYSO), axial field-of-view (97.4 cm and 194.8 cm), and detector configuration (full and sparse) were simulated. In addition, 8 J-PET scanners with different configurations, such as various axial field-of-view (200 cm and 250 cm), the different cross-sections of plastic scintillator, and the multiple numbers of the
plastic scintillator layers (2, 3, and 4), based on J-PET technology have been simulated by GATE software. Furthermore, Biograph Vision has been simulated to compare the results with standard PET scans. Two types of simulations have been performed. The first one with a centrally located source with a diameter of 1mm and a length of 250 cm, and the second one with the same source inside a water-filled cylindrical phantom with a diameter of 20 cm and a length of 183 cm.
Results: With regards to sensitivity, among all the proposed scanners, the ones constructed with BGO crystals give the best performance (? 350 cps/kBq at the center). The utilization of sparse geometry or LYSO crystals significantly lowers the achievable sensitivity of such systems. The J-PET design gives a similar sensitivity to the sparse LYSO crystal-based detectors while having full detector coverage over the body. Moreover, it provides uniform sensitivity over the body
with additional gain on its sides and provides the possibility for high-quality brain
imaging.
Conclusion: Taking into account not only the sensitivity but also the price of the Total-Body PET tomographs, which till now was one of the main obstacles in their widespread clinical availability, the J-PET tomography system based on plastic scintillators could be a cost-efficient alternative for Total-Body PET scanners.
Kaonic atoms at the DAFNE collider: a strangeness adventure
C. Curceanu, L. Abbene, C. Amsler, M. Bazzi, M. Bettelli, G. Borghi, D. Bosnar, M. Bragadireanu, A. Buttacavoli, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, L. De Paolis, K. Dulski, C. Fiorini, I. Friscic, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedzwiecki, H. Ohnishi, K. Piscicchia, F. Principato, Y. Sada, A. Scordo, F. Sgaramella, H. Shi, M. Silarski, D. L. Sirghi, F. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tuchler, O. Vazquez Doce, C. Yoshida, A. Zappettini, J. Zmeskal
abstract
Kaonic atoms are an extremely efficient tool to investigate the strong interaction at the low energy Frontier, since they provide direct access to the K?N interaction at threshold, eliminating the necessity for extrapolation, unlike in the case of scattering experiments. During the 1970s and 1980s, extensive studies were performed on kaonic atoms spanning across a broad spectrum of elements in the periodic table, ranging from lithium to uranium. These measurements provided inputs and constraints for the theoretical description of the antikaon-nuclei interaction potential. Nevertheless, the existing data suffer from significant experimental uncertainties, and numerous measurements have been found to be inconsistent with more recent measurements that utilize advanced detector technology. Furthermore, there remain numerous transitions of kaonic atoms that have yet to be measured. For these reasons, a new era of kaonic atoms studies is mandatory. The DA?NE electron-positron collider at the INFN Laboratory of Frascati (INFN-LNF) stands out as a unique source of low-energy kaons, having been utilized by Collaborations such as DEAR, SIDDHARTA, and AMADEUS for groundbreaking measurements of kaonic atoms and kaon-nuclei interactions. Presently, the SIDDHARTA-2 experiment is installed at DA?NE, aiming to perform the first-ever measurement of the 2p ? 1s x-ray transition in kaonic deuterium, a crucial step towards determining the isospin-dependent antikaon-nucleon scattering lengths. Based on the experience gained with the SIDDHARTA experiment, which performed the most precise measurement of the kaonic hydrogen 2p ? 1s x-ray transition, the SIDDHARTA-2 setup is now fully equipped for the challenging kaonic deuterium measurement. In this paper, we present a comprehensive description of the SIDDHARTA-2 setup and of the first kaonic atoms measurements performed during the commissioning phase of the DA?NE collider. We also outline a proposal for future measurements of kaonic atoms at DA?NE beyond SIDDHARTA-2, which is intended to stimulate discussions within the broad scientific community performing research, directly or indirectly, related to this field.
Transformation of PET raw data into images for event classification using convolutional neural networks
P. Konieczka, L. Raczyński, W. Wiślicki, O. Fedoruk, K. Klimaszewski, P. Kopka, W. Krzemień, R.Y. Shopa, J. Baran, A. Coussat, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, A. Gajos, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, G. Korcyl, T. Kozik, D. Kumar, S. Niedźwiecki, S. Parzych, E. Pérez del Río, S. Sharma, S. Shivani, M. Skurzok, E.Ł. Stępień, F. Tayefi, P. Moskal
abstract
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into -dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study
K. Brzeziński, J. Baran, D. Borys, J. Gajewski, N. Chug, A. Coussat, E. Czerwiński, M. Dadgar, K. Dulski, K.V. Eliyan, A. Gajos, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, R. Kopeć, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, A.J. Lomax, K. McNamara, S. Niedźwiecki, P. Olko, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, S. Sharma, Shivani, R.Y. Shopa, T. Skóra, M. Skurzok, P. Stasica, E.Ł. Stępień, K. Tayefi, F. Tayefi, D.C. Weber, C. Winterhalter, W. Wiślicki, P. Moskal, A. Ruciński
abstract
Objective. The Jagiellonian positron emission tomography (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach. Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualized in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results. Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance. The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment.
The KAMEO proposal: Investigation of the E2 nuclear resonance effects in kaonic atoms
L. De Paolis on behalf of M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, C. Fiorini, I. Frišči`c, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Nied`zwiecki, O. Ohnishi, K. Piscicchia, Y. Sada, A. Scordo, F. Sgaramella, H. Shi, M. Silarski, D. L. Sirghi, F. Sirghi, M. Skurzok, S. Wycech, A. Spallone, K. Toho, M. Tüchler, C. Yoshida, J. Zmeskal, C. Curceanu
abstract
The E2 nuclear resonance effect is a phenomenon that occurs whenthe energy of an atomic de-excitation state closely matches that of a nuclear excita-tion state, resulting in the attenuation of certain atomic X-ray lines in the resonantisotope target. The study of this effect in kaonic atoms can provide important insightinto the mechanisms of the strong kaon-nucleus interaction. In 1975, Goldfrey, Lum,and Wiegand at Lawrence Berkeley Laboratory observed the effect in9842Mo, but theydid not have enough data to reach a conclusive result. The E2 nuclear resonanceeffect is expected to occur in four kaonic molybdenum isotopes (9442Mo,9642Mo,9842Mo,and10042Mo) with similar energy values. The KAMEO (Kaonic Atoms MeasuringNuclear Resonance Effects Observables) proposal plans to study this effect in theseisotopes at the DA?NE ? factory during the SIDDHARTA-2 experiment. KAMEOwill use four solid strip targets, each enriched with a different molybdenum isotope,and expose them to negatively charged kaons produced by ? meson decays. TheX-ray transition measurements will be performed using a high-purity germaniumdetector, and an additional solid strip target of non-resonant9242Mo isotope will beexposed and used as a reference for standard non-resonant transitions.
Comparative studies of plastic scintillator strips with high technical attenuation length for the total-body J-PET scanner
Ł. Kapłon, J. Baran, N. Chug, A. Coussat, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, B. Hiesmayr, E. Kavya Valsan, K. Klimaszewski, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, G. Moskal, S. Niedźwiecki, D. Panek, S. Parzych, E. Pérez del Rio, L. Raczyński, A. Ruciński, S. Sharma, S. Shivani, R. Shopa, M. Silarski, M. Skurzok, E. Stępień, F. Tayefi Ardebili, K. Tayefi Ardebili, W. Wiślicki, P. Moskal
abstract
Plastic scintillator strips are considered as one of the promising solutions for the cost-effective construction of total-body positron emission tomography, (PET) system. The purpose of the performed measurements is to compare the transparency of long plastic scintillators with dimensions 6 mm x 24 mm x 1000 mm and with all surfaces polished. Six different types of commercial, general purpose, blue-emitting plastic scintillators with low attenuation of visible light were tested, namely: polyvinyl toluene-based BC-408, EJ-200, RP-408, and polystyrene-based Epic, SP32 and UPS-923A. For determination of the best type of plastic scintillator for total-body Jagiellonian positron emission tomograph (TB-J-PET) construction, emission and transmission spectra, and technical attenuation length (TAL) of blue light-emitting by the scintillators were measured and compared. The TAL values were determined with the use of UV lamp as excitation source, and photodiode as light detector. Emission spectra of investigated scintillators have maxima in the range from 420 nm to 429 nm. The BC-408 and EJ-200 have the highest transmittance values of about 90% at the maximum emission wavelength measured through a 6 mm thick scintillator strip and the highest technical attenuation length reaching about 2000 mm, allowing assembly of long detection modules for time-of-flight (TOF) J-PET scanners. Influence of the 6 mm × 6 mm, 12 mm × 6 mm, 24 mm × 6 mm cross-sections of the 1000 mm long EJ-200 plastic scintillator on the TAL and signal intensity was measured. The highest TAL value was determined for samples with 24 mm × 6 mm cross-section.
Efficiency determination of J-PET: first plastic scintillators-based PET scanner
S. Sharma, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, K. Eliyan, A. Gajos, N. Gupta-Sharma, B. C. Hiesmayr, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, Sz. Niedźwiecki, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, Shivani, R. Y. Shopa, M. Skurzok, E. Ł. Stępień, F. Tayefi, K. Tayefi , W. Wiślicki and P. Moskal
abstract
Background:
The Jagiellonian Positron Emission Tomograph is the 3-layer prototype
of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators
are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV
photons emitted in e+e- annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures
the precise labeling of the 511 keV photons.
Results:
By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70-270 keV, where it varies between 20 and 100%. In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons.
Conclusion:
A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion-beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine.
Developing a Novel Positronium Biomarker for Cardiac Myxoma Imaging
P. Moskal, E. Kubicz, G. Grudzień, E. Czerwiński, K. Dulski, B. Leszczyński, S. Niedźwiecki, E.Ł. Stępień
abstract
Purpose: Cardiac myxoma (CM), the most common cardiac tumor in adults, accounts for 50?75% of benign cardiac tumors. The diagnosis of CM is often elusive, especially in young stroke survivors and transthoracic echocardiography (TTE) is the initial technique for the differential diagnostics of CM. Less invasive cardiac computed tomography (CT) and magnetic resonance imaging (MRI) are not available for the majority of cardiac patients. Here, a robust imaging approach, ortho-Positronium (o-Ps) imaging, is presented to determine cardiac myxoma extracted from patients undergoing urgent cardiac surgery due to unexpected atrial masses. We aimed to assess if the o-Ps atom, produced copiously in intramolecular voids during the PET imaging, serves as a biomarker for CM diagnosing.
Methods: Six perioperative CM and normal (adipose) tissue samples from patients, with primary diagnosis confirmed by the histopathology examination, were examined using positron annihilation lifetime spectroscopy (PALS) and micro-CT. Additionally, cell cultures and confocal microscopy techniques were used to picture cell morphology and origin.
Results: We observed significant shortening in the mean o-Ps lifetime in tumor with compare to normal tissues: an average value of 1.92(02) ns and 2.72(05) ns for CM and the adipose tissue, respectively. Microscopic differences between tumor samples, confirmed in histopathology examination and micro-CT, did not influenced the major positronium imaging results.
Conclusions: Our findings, combined with o-Ps lifetime analysis, revealed the novel emerging positronium imaging marker (o-PS) for cardiovascular imaging. This method opens the new perspective to facilitate the quantitative in vivo assessment of intracardiac masses on a molecular (nanoscale) level.
J-PET detection modules based on plastic scintillators for performing studies with positron and positronium beams
S. Sharma, J. Baran, R.S. Brusa, R. Caravita, N. Chug, A. Coussat, C. Curceanu, E. Czerwinski, M. Dadgar, K. Dulski, K. Eliyan, A. Gajos, B.C. Hiesmayr, K. Kacprzak, L. Kaplon, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemien D. Kumar, S. Mariazzi, S. Niedźwiecki, L. Panasa, S. Parzych, L. Povolo, E. Perez del Rio, L. Raczynski Shivani, R.Y. Shopa, M. Skurzok, E.L. Stepien, F. Tayefi, K. Tayefi, W. Wislicki and P. Moskal
abstract
The J-PET detector, which consists of inexpensive plastic scintillators, has demonstrated its potential in the study of fundamental physics. In recent years, a prototype with 192 plastic scintillators arranged in 3 layers has been optimized for the study of positronium decays. This allows performing precision tests of discrete symmetries (C, P, T) in the decays of positronium atoms. Moreover, thanks to the possibility of measuring the polarization direction of the photon based on Compton scattering, the predicted entanglement between the linear polarization of annihilation photons in positronium decays can also be studied. Recently, a new J-PET prototype was commissioned, based on a modular design of detection units. Each module consists of 13 plastic scintillators and can be used as a stand-alone, compact and portable detection unit. In this paper, the main features of the J-PET detector, the modular prototype and their applications for possible studies with positron and positronium beams are discussed. Preliminary results of the first test experiment performed on two detection units in the continuous positron beam recently developed at the Antimatter Laboratory (AML) of Trento are also reported.
TOF MLEM Adaptation for the Total-Body J-PET with a Realistic Analytical System Response Matrix
R.Y. Shopa, J. Baran, K. Klimaszewski, W. Krzemień, L. Raczyński, W. Wiślicki, K. Brzeziński, N. Chug, A. Coussat, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, B.C. Hiesmayr, E. Kavya Valsan, G. Korcyl, T. Kozik, D. Kumar, Ł. Kapłon, G. Moskal, S. Niedźwiecki, D. Panek, S. Parzych, E. Pérez del Rio, A. Ruciński, S. Sharma, Shivani, M. Silarski, M. Skurzok, E. Stepień, F. Tayefi Ardebili, K. Tayefi Ardebili, P. Moskal
abstract
We report a study of the original image reconstruction algorithm based on the time-of-flight maximum likelihood expectation maximisation (TOF MLEM), developed for the total-body (TB) Jagiellonian PET (J-PET) scanners. The method is applicable to generic cylindrical or modular multi-layer layouts and is extendable to multi-photon imaging. The system response matrix (SRM) is represented as a set of analytical functions, uniquely defined for each pair of plastic scintillator strips used for the detection. A realistic resolution model (RM) in detector space is derived from fitting the Monte Carlo simulated emissions and detections of annihilation photons on oblique transverse planes. Additional kernels embedded in SRM account for TOF, parallax effect and axial smearing. The algorithm was tested on datasets, simulated in GATE for the NEMA IEC and static XCAT phantoms inside a 24-module 2-layer TB J-PET. Compared to the reference TOF MLEM with none or a shift-invariant RM, an improvement was observed, as evaluated by the analysis of image quality, difference images and ground truth metrics. We also reconstructed the data with additive contributions, pre-filtered geometrically and with non-TOF scatter correction applied. Despite some deterioration, the obtained results still capitalise on the realistic RM with better edge preservation and superior ground truth metrics. The envisioned prospects of the TOF MLEM with analytical SRM include its application in multi-photon imaging and further upgrade to account for the non-collinearity, positron range and other factors.
Investigation of novel preclinical Total Body PET designed with J-PET technology: A simulation study
M. Dadgar, S. Parzych, F. Tayefi Ardebili, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, K. Dulski, K. Eliyan, A. Gajos, B.C. Hiesmayr, K. Kacprzak, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, S. Niedźwiecki, D. Panek, E. Perez del Rio, L. Raczyński, S. Sharma, R.Y. Shopa, M. Skurzok, K. Tayefi Ardebili, S. Vandenberghe, W. Wiślicki, E.Ł. Stępień, P. Moskal
abstract
The growing interest in human-grade Total Body PET systems has also application in small animal research. Due to the existing limitations in human-based studies involving drug development and novel treatment monitoring, animalbased research became a necessary step for testing and protocol preparation. In this simulation-based study two unconventional, cost effective small animal Total Body PET scanners (for mouse and rat studies) have been investigated in order to inspect their feasibility for preclinical research. They were designed with the novel technology explored by the Jagiellonian PET Collaboration (J-PET). Two main PET characteristics: sensitivity and spatial resolution were mainly inspected to evaluate their performance. Moreover, the impact of the scintillator dimension and time-offlight on the latter parameter were examined in order to design the most efficient tomographs. The presented results show that for mouse TB J-PET the achievable system sensitivity is equal to 2.35% and volumetric spatial resolution to 9.46 +- 0.54 mm3, while for rat TB J-PET they are equal to 2.6% and 14.11 ? 0.80 mm3, respectively. Furthermore, it was shown that the designed tomographs are almost parallax-free systems, hence they resolve the problem of the acceptance criterion trade-off between enhancing spatial resolution and reducing sensitivity.
Multi-photon time-of-flight MLEM application for the positronium imaging in J-PET
R. Shopa, K. Dulski
abstract
We develop a positronium imaging method for the Jagiellonian PET (J-PET) scanners based on the time-of-flight maximum likelihood expectation maximisation (TOF MLEM). The system matrix elements are calculated on-the-fly for the coincidences comprising two annihilation and one de-excitation photons that originate from the ortho-positronium (o-Ps) decay. Using the Geant4 library, a Monte Carlo simulation was conducted for four cylindrical 22Na sources of ?+ decay with diverse o-Ps mean lifetimes, placed symmetrically inside the two JPET prototypes. The estimated time differences between the annihilation and the positron emission were aggregated into histograms (one per voxel), updated by the weights of the activities reconstructed by TOF MLEM. The simulations were restricted to include only the o-Ps decays into back-to-back photons, allowing a linear fitting model to be employed for the estimation of the mean lifetime from each histogram built in the log scale. To suppress the noise, the exclusion of voxels with activity below 2% ? 10% of the peak was studied. The estimated o-Ps mean lifetimes were consistent with the simulation and distributed quasi-uniformly at high MLEM iterations. The proposed positronium imaging technique can be further upgraded to include various correction factors, as well as be modified according to realistic o-Ps decay models.
ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging
D. Borys, J. Baran, K.W. Brzezinski, J. Gajewski, N. Chug, A. Coussat, E. Czerwiński, M. Dadgar, K. Dulski, K. Valsan Eliyan, A. Gajos, K. Kacprzak, Ł. Kapłon, K. Klimaszewski, P. Konieczka, R. Kopec, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, A. John Lomax, K. McNamara, S. Niedźwiecki, P. Olko, D. Panek, S. Parzych, E. Pérez del Río, L. Raczyński, S. Sharma, S. Shivani, R.Y. Shopa, T. Skóra, M. Skurzok, P. Stasica, E. Stępień, K. Tayefi Ardebili, F. Tayefi, D. Charles Weber, C. Winterhalter, W. Wiślicki, P. Moskal, A. Rucinski
abstract
Objective: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
Positronium imaging with the novel multiphoton PET scanner
P. Moskal, K. Dulski, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, J. Gajewski, A. Gajos, G. Grudzień, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, H. Karimi, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, P. Małczak, S. Niedźwiecki, M. Pawlik-Niedźwiecka, M. Pędziwiatr, L. Raczyński, J. Raj, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E.Ł. Stępień, M. Szczepanek, F. Tayefi, W. Wiślicki
abstract
In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient?s body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially
enhance the specificity of PET diagnostics.
Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET
R.Y. Shopa, K. Klimaszewski, P. Kopka, P. Kowalski, W. Krzemień, L. Raczyński, W. Wiślicki, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, A. Gajos, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, D. Kisielewska, G. Korcyl, N. Krawczyk, E. Kubicz, Sz. Niedźwiecki, J. Raj, S. Sharma, Shivani, E.Ł. Stępień, F. Tayefi, P. Moskal
abstract
We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back gamma-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scan- ner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 times higher in the axial direction than for the conventional 3D FBP. For real- istic 10-minute scans of NEMA IEC and XCAT, which require a trade-offbetween the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demon- strated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the recon- struction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.
Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography
P. Moskal, A. Gajos, M. Mohammed, J. Chhokar, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, M. Gorgol, J. Goworek, B. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, T. Kozik, E. Kubicz, S. Niedźwiecki, S. Parzych, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, S. Sharma, S. Choudhary, R. Shopa, A. Sienkiewicz, M. Silarski, M. Skurzok, E. Stepien, F. Tayefi, W. Wiślicki
abstract
Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remain scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron-positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by the knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without a magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with a single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10^{-4}, with an over threefold improvement on the previous measurement.
Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators
P. Moskal, P. Kowalski, R.Y. Shopa, L. Raczyński, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, A. Gajos, B.C. Hiesmayr, K. Kacprzak, Ł. Kapłon, D. Kisielewska, K. Klimaszewski, P. Kopka, G. Korcyl, N. Krawczyk, W. Krzemień, E. Kubicz, Sz. Niedźwiecki, Sz. Parzych, J. Raj, S. Sharma, S. Shivani, E. Stępień, F. Tayefi, W. Wiślicki
abstract
The purpose of the presented research is the estimation of the performance characteristics of the economic total-body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMANU-2-2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips
(each with a cross-section of 6 mm times 30 mm and length of 140 or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with a diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolution (SRs) of 3.7mm (transversal) and 4.9mm (axial) are achieved. The noise equivalent count rate (NECR) peak of 630 kcps is expected at 30 kBq cc^-1. Activity concentration and the sensitivity at the center amount to 38 cps kBq^-1. The scatter fraction (SF) is estimated to 36.2 %. The values of SF and SR are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET.With respect to the standard PET systemswithAFOVin the range from16 to 26 cm, the TBJ-PET is characterized by an increase inNECRapproximately by a factor of 4 and by the increase of the whole-body sensitivity by a factor of 12.6 to 38. The time-of-flight resolution for the TB-J-PETis expected to be at the level ofCRT=240 ps fullwidth at half-maximum. For the TB-J-PETwith an AFOVof 140 cm, an image quality of the reconstructed images of a NEMAIEC phantom was presented with a contrast recovery coefficient and a background variability parameters. The increase of the whole-body sensitivity andNECRestimated for the TB-J-PET with respect to current commercial PETsystems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners. TB-J-PETmay constitutes an economic alternative for the crystal TB-PET scanners, since plastic scintillators are much cheaper than BGO or LYSO crystals and the axial arrangement of the strips significantly reduces the costs of readout electronics and SiPMs.
The J-PET detector - a tool for precision studies of ortho-positronium decays
K. Dulski, S.D. Bass, J. Chhokar, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, J. Gajewski, A. Gajos, M. Gorgol, R. Del Grande, B.C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, D. Kisielewska, K. Klimaszewski, P. Kopka, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, P. Małczak, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, M. Pędziwiatr, L. Raczyński7, J. Raj, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E. Ł. Stępień, F. Tayefi, W. Wiślicki, B. Zgardzińska, P. Moskal
abstract
The J-PET tomograph is constructed from plastic scintillator strips arranged axially in concentric cylindrical layers. It enables investigations of positronium decays by measurement of the time, position, polarization and energy deposited by photons in the scintillators, in contrast to studies conducted so far with crystal and semiconductor based detection systems where the key selection of events is based on the measurement of the photons energies. In this article we show that the J-PET tomography system constructed solely from plastic scintillator detectors is capable of exclusive measurements of the decays of ortho-positronium atoms. We present the first positronium production results and its lifetime distribution measurements. The obtained results prove the capability of the J-PET tomograph for (i) fundamental studies of positronium decays (in particular test of discrete symmetries in purely leptonic systems), (ii) positron annihilation lifetime spectroscopy, as well as (iii) molecular imaging diagnostics and (iv) observation of entanglement
3D TOF-PET image reconstruction using total variation regularization
L. Raczyński, W. Wiślicki, K. Klimaszewski, W. Krzemień, P. Kopka, P. Kowalski, R. Y. Shopa, M. Bała, J. Chhokar, C. Curceanu, E. Czerwinski, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, R. Del Grande, B. Hiesmayr, B. Jasińska, K. Kacprzak, L. Kapłon, D. Kisielewska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, S. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, J. Raj, K. Rakoczy, A. Ruciński, S. Sharma, S. Shivani, M. Silarski, M. Skurzok, E.Ł. Stepień, B. Zgardzińska, P. Moskal
abstract
In this paper we introduce a semi-analytic algorithm for 3-dimensional image reconstruction for positron emission tomography (PET). The method consists of the back-projection of the acquired data into the most likely image voxel according to time-of-flight (TOF) information, followed by the filtering step in the image space using an iterative optimization algorithm with a total variation (TV) regularization. TV regularization in image space is more computationally efficient than usual iterative optimization methods for PET reconstruction with a full system matrix that uses TV regularization. The efficiency comes from the one-time TOF back-projection step that might also be described as a reformatting of the acquired data. An important aspect of our work concerns the evaluation of the filter operator of the linear transform mapping an original radioactive tracer distribution into the TOF back-projected image. We obtain concise, closed-form analytical formula for the filter operator. The proposed method is validated with the Monte Carlo simulations of the NEMA IEC phantom using a one-layer, 50 cm-long cylindrical device called Jagiellonian PET scanner. The results show a better image quality compared with the reference TOF maximum likelihood expectation maximization algorithm.
Synchronisation and calibration of the 24-modules J-PET prototype with 300 mm axial field of view
P. Moskal, T. Bednarski, Sz. Niedźwiecki, M. Silarski, E. Czerwiński, T. Kozik, J. Chhokar, M. Bała, C. Curceanu, R. Del Grande, M. Dadgar, K. Dulski, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, D. Kisielewska, K.Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, L. Raczyński, S. Sharma, Shivani, R. Y. Shopa, M. Skurzok, E. Stępień, W. Wiślicki, B. Zgardzińska
abstract
Research conducted in the framework of the J-PET project aims to develop a cost-effective total-body positron emission tomography scanner. As a first step on the way to construct a full-scale J-PET tomograph from long strips of plastic scintillators, a 24-strip prototype was built and tested. The prototype consists of detection modules arranged axially forming a cylindrical diagnostic chamber with an inner diameter of 360 mm and an axial field-of-view of 300 mm. Promising perspectives for a low-cost construction of a total-body PET scanner are opened due to an axial arrangement of strips of plastic scintillators, which have a small light attenuation, superior timing properties, and the possibility of cost-effective increase of the axial field-of-view. The presented prototype comprises dedicated solely digital front-end electronic circuits and a triggerless data acquisition system which required development of new calibration methods including time, thresholds and gain synchronization. The system and elaborated calibration methods including first results of the 24-module J-PET prototype are presented and discussed. The achieved coincidence resolving time equals to CRT = 490 +- 9 ps. This value can be translated to the position reconstruction accuracy s(Dl) = 18 mm which is fairly position-independent Keywords: positron emission tomography, plastic scintillators, J-PET.
Performance assessment of the 2gamma positronium imaging with the total-body PET scanners
P. Moskal, D. Kisielewska, Z. Bura, C. Chhokar, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, R. Del Grande, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, A. Kamińska, Ł. Kapłon, H. Karimi, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, T. Kozik, E. Kubicz, P. Małczak, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, M. Pędziwiatr, L. Raczyński, J. Raj, A. Ruciński, S. Sharma, Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, E. Ł. Stępień, S. Vandenberghe, W. Wiślicki, B. Zgardzińska
abstract
In living organisms the positron-electron annihilation (occurring during the PET imaging) proceeds in about 30% via creation of a metastable ortho-positronium atom. In the tissue, due to the pick-off and conversion processes, over 98% of ortho-positronia annihilate into two 511~keV photons. In this article we assess the feasibility for reconstruction of the mean ortho-positronium lifetime image based on annihilations into two photons. The main objectives of this work include: (i) estimation of the sensitivity of the total-body PET scanners for the ortho-positronium mean lifetime imaging using 2gamma annihilations, and (ii) estimation of the spatial and time resolution of the ortho-positronium image as a function of the coincidence resolving time (CRT) of the scanner. Simulations are conducted assuming that radiopharmaceutical is labelled with 44Sc isotope emitting one positron and one prompt gamma. The image is reconstructed on the basis of triple coincidence events. The ortho-positronium lifetime spectrum is determined for each voxel of the image. Calculations were performed for cases of total-body detectors build of (i) LYSO scintillators as used in the EXPLORER PET, and (ii) plastic scintillators as anticipated for the cost-effective total-body J-PET scanner. To assess the spatial and time resolution the three cases were considered assuming that CRT is equal to 140ps, 50ps and 10ps. The estimated total-body PET sensitivity for the registration and selection of image forming triple coincidences is larger by a factor of 12.2 (for LYSO PET) and by factor of 4.7 (for plastic PET) with respect to the sensitivity for the standard 2gamma imaging by LYSO PET scanners with AFOV=20cm.
Estimating relationship between the Time Over Threshold and energy loss by photons in plastic scintillators used in the J-PET scanner
S. Sharma, J. Chhokar, C. Curceanu, E. Czerwinski, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, N. Gupta-Sharma, R. Del Grande, B. C. Hiesmayr, B. Jasinska, K. Kacprzak, L. Kaplon, H. Karimi, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemien, E. Kubicz, M. Mohammed, Sz. Niedzwiecki, M. Palka, M. Pawlik-Niedzwiecka, L. Raczynski, J. Raj, A. Rucinski, Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, E. L. Stepien, W. Wislicki, B. Zgardzinska, P. Moskal
abstract
Time-Over-Threshold (TOT) technique is being used widely due to its implications in developing the multi channel readouts mainly when fast signal processing is required. Using TOT technique as a measure of energy loss instead of charge integration methods significantly reduces the signals readout cost by combining the time and energy information. Therefore, this approach can potentially be used in J-PET tomograph which is build from plastic scintillators characterized by fast light signals. The drawback in adopting this technique is lying in the non-linear correlation between input energy loss and TOT of the signal. The main motivation behind this work is to develop the relationship between TOT and energy loss and validate it with the J-PET tomograph.
The experiment was performed using the 22Na beta emitter source placed in the center of the J-PET tomograph. One can obtain primary photons of two different energies: 511 keV photon from the annihilation of positron (direct annihilation or through the formation of para-Positronim atom or pick-off process of ortho-Positronium atoms), and 1275 keV prompt photon. This allows to study the correlation between TOT values and energy loss for energy range up to 1000 keV. As the photon interacts dominantly via Compton scattering inside the plastic scintillator, there is no direct information of primary photon energy. However, using the J-PET geometry one can measure the scattering angle of the interacting photon. Since, 22Na source emits photons of two different energies, it is required to know unambiguously the energy of incident photons and its corresponding scattering angle for the estimation of energy deposition. In this work, the relationship between Time Over Threshold and energy loss by interacting photons inside the plastic scintillators used in J-PET scanner is established for a energy deposited range 100-1000 keV.
Hit-time and hit-position reconstruction in strips of plastic scintillators using multi-threshold readouts
N. G. Sharma, M. Silarski, J. Chhokar, E. Czerwinski, C. Curceanu, K. Dulski, K. Farbaniec, A. Gajos, R. Del Grande, M. Gorgol, B. C. Hiesmayr, B. Jasinska, K. Kacprzak, L. Kaplon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemien, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedzwiecki, M. Palka, M. Pawlik-Niedzwiecka, L. Raczynski, J. Raj, S. Sharma, S. Shivani, R. Y. Shopa, M. Skurzok, W. Wislicki, B. Zgardzinska, P. Moskal
abstract
In this article a new method for the reconstruction of hit-position and hit-time of photons in long scintillator detectors is investigated. This research is motivated by the recent development of the positron emission tomography scanners based on plastic scintillators. The proposed method constitutes a new way of signal processing in Multi-Voltage-Technique. It is based on the determination of the degree of similarity between the registered signals and the synchronized model signals stored in a library. The library was established for a set of well defined hit-positions along the length of the scintillator. The Mahalanobis distance was used as a measure of similarity between the two compared signals. The method was validated on the experimental data measured using two-strips J-PET prototype with dimensions of 5x9x300 mm. The obtained Time-of-Flight (TOF) and spatial resolutions amount to 325 ps (FWHM) and 25 mm (FWHM), respectively. The TOF resolution was also compared to the results of an analogous study done using Linear Fitting method. The best TOF resolution was obtained with this method at four pre-defined threshold levels which was comparable to the resolution achieved from the Mahalanobis distance at two pre-defined threshold levels. Although the algorithm of Linear Fitting method is much simpler to apply than the Mahalanobis method, the application of the Mahalanobis distance requires a lower number of applied threshold levels and, hence, decreases the costs of electronics used in PET scanner.
PALS Avalanche - A New PAL Spectra Analysis Software
K. Dulski
abstract
A novel concept for tomography of the human body developed by the Jagiellonian Positronium EmissionTomography (J-PET) project provides the possibility to combine metabolic information collected by standardPET with structural information obtained from positronium lifetime. This results in a morphometric image. Tothis end, there is a need to develop software compatible with the J-PET Framework for fast online analysis duringimaging. PALS Avalanche is a software developed on UNIX system and based on ROOT software, which allows oneto decompose positronium annihilation lifetime spectra in the form of a set of single time differences and histogram.Performance of the PALS Avalanche will be tested by analysing simulated PAL spectra.
Studies of the ortho-Positronium lifetime for cancer diagnostics
Z. Bura, K. Dulski, E. Kubicz, P. Małczak, M. Pędziwiatr, M. Szczepanek, E.Ł. Stępień, P. Moskal
abstract
Positron Annihilation Lifetime Spectroscopy (PALS) is a technique based on the analysis of the lifetime of positronium emitted from implanted or delivered positronium donors. This technique employs the lifetime and intensity dependence on the structure of analyzed material. Due to this specific features, PALS might be used in further research protocols and clinical studies for cancer diagnostic purposes. This article reports the progress in the study design, main objectives of the study, protocols of measurement sand data analysis and further perspective of this study. The main goal of this work was to show the effectiveness of this method and progress in its development. For this purpose, colorectal cancer was examined.
A Method for Time Calibration of PET Systems Using Fixed beta+ Radioactive Source
K. Dulski, M. Silarski, P. Moskal
abstract
The Positron Emission Tomography (PET) is one of the most popular imaging techniques of the human body. During the PET scans, a positron from the beta+ emitter given to the patient, directly or after forming a positronium, annihilates with an electron from the patient, with emission of photons. Registration of produced photons allows one to reconstruct the distribution of radioisotopes in the patient's body, further interpreted as the metabolic image. The imaging of metabolism can be improved by measurement of the time difference between registration of the two photons in coincidence (Time-of-Flight (TOF))[1]. In the case of the TOF-PET scanners, the time resolution of the detection system and its calibration is crucial. The Jagiellonian Positron Emission Tomograph (J-PET) detector is an example of the TOF-PET system, constructed at the Jagiellonian University in Kraków, which is based on plastic scintillators and very fast electronics
Towards time reversal symmetry test with o-PS decays using the J-PET detector
J. Raj, K. Dulski, E. Czerwiński
abstract
One of the features of the triplet state of positronium (ortho-positronium) atoms is its relatively longer lifetime when compared to the singlet states of positronium (para-positronium) atoms. The most probable decay of orthopositronium is into three annihilation photons. In order to test the discrete symmetry using the time-reversal symmetry odd-operator, it is important to identify ortho-positronium decay. Identification of the decay of orthopositronium atoms by measuring the positronium annihilation lifetime with the Jagiellonian-Positron Emission Tomograph (J-PET) is presented in this article.
Feasibility study of the positronium imaging with the J-PET tomograph
P. Moskal, D. Kisielewska, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, M. Gorgol, B. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, G. Korcyl, P. Kowalski, W. Krzemień, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E. Stępień, W. Wiślicki, B. Zgardzińska
abstract
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho- positronium annihilation, as well as the possibility of positronium average lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2 ns to ~2.9 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
Simulation studies of annihilation-photon's polarisation via Compton scattering with the J-PET tomograph
N. Krawczyk, B.C. Hiesmayr, J. Chhokar, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, W. Krzemień, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, K. Rakoczy, Z. Rudy, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
J-PET is the first positron-emission tomograph (PET) constructed from plastic scintillators. It was optimized for the detection of photons from electron-positron annihilation. Such photons, having an energy of 511 keV, interact with electrons in plastic scintillators predominantly via the Compton effect. Compton scattering is at most probable at an angle orthogonal to the electric field vector of the interacting photon. Thus registration of multiple photon scatterings with J-PET enables to determine the polarization of the annihilation photons. In this contribution we present estimates on the physical limitation in the accuracy of the polarization determination of 511 keV photons with the J-PET detector.
Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector
P. Moskal, N. Krawczyk, B. C. Hiesmayr, M. Bała, C. Curceanu, E. Czerwinski, K. Dulski, A. Gajos, M. Gorgol, R. Del Grande, B. Jasinska, K. Kacprzak, L. Kapłon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczynski, J. Raj, Z. Rudy, S. Sharma, M. Silarski, Shivani, R. Y. Shopa, M. Skurzok, W. Wislicki, B. Zgardzinska
abstract
J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511keV photons via Compton scattering. For scattering angles of about 82 degree (where the best contrast for polarization measurement is theoretically predicted) we find
that the single event resolution for the determination of the polarization is about 40 degree (predominantly due to properties
of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.
Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices
G. Korcyl, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, B. Flak, A. Gajos, B. Głowacz, M. Gorgol, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, M. Kajetanowicz, D. Kisielewska, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pawlik- Niedźwiecka, M. Pałka, L. Raczyński, P. Rajda, Z. Rudy, P. Salabura, N. G. Sharma, S. Sharma, R. Y. Shopa, M. Skurzok, M. Silarski, P. Strzempek, A. Wieczorek, W. Wiślicki, R. Zaleski, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
A novel approach to tomographic data processing
has been developed and evaluated using the Jagiellonian PET (J-
PET) scanner as an example. We propose a system in which there
is no need for powerful, local to the scanner processing facility,
capable to reconstruct images on the fly. Instead we introduce a
Field Programmable Gate Array (FPGA) System-on-Chip (SoC)
platform connected directly to data streams coming from the
scanner, which can perform event building, filtering, coincidence
search and Region-Of-Response (ROR) reconstruction by the
programmable logic and visualization by the integrated
processors. The platform significantly reduces data volume
converting raw data to a list-mode representation, while
generating visualization on the fly.
A feasibility study of the time reversal violation test based on polarization of annihilation photons from the decay of ortho-Positronium with the J-PET detector
J. Raj, A. Gajos, C. Curceanu, E. Czerwiński, K. Dulski, M. Gorgol, N. Gupta-Sharma, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, K. Rakoczy, Z. Rudy, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is a novel device being developed at Jagiellonian University in Krakow, Poland based on organic scintillators. J-PET is an axially symmetric and high acceptance scanner that can be used as a multi-purpose detector system. It is well suited to pursue tests of discrete symmetries in decays of positronium in addition to medical
imaging. J-PET enables the measurement of both momenta and the polarization vectors of annihilation photons. The latter is a unique feature of the J-PET detector which allows the study of time reversal symmetry violation operator which can be constructed solely from the annihilation photons momenta before and after the scattering in the detector.
Commissioning of the J-PET detector in view of the positron annihilation lifetime spectroscopy
K. Dulski, C. Curceanu, E. Czerwiński, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, D. Kisielewska, K. Klimaszewski, G. Korcyl, P. Kowalski, N. Krawczyk, W. Krzemień, T. Kozik, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, K. Rakoczy, Z. Rudy, S. Sharma, Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET device built from plastic scintillators. It is a multi-purpose detector designed for medical imaging and for studies of properties of positronium atoms in porous matter and in living organisms. In this article we report on the commissioning of the J-PET detector in view of studies of positronium decays. We present results of analysis of the positron lifetime measured in the porous polymer. The obtained results prove that J-PET is capable of performing simultaneous imaging of the density distribution of annihilation points as well as positron annihilation lifetime spectroscopy.
Feasibility study of the time reversal symmetry tests in decay of metastable positronium atoms with the J-PET detector
A. Gajos, C. Curceanu, E. Czerwinski, K. Dulski, M. Gorgol, N. Gupta-Sharma, B.C. Hiesmayr, B. Jasinska, K. Kacprzak, L. Kaplon, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, M. Mohammed, Sz Niedzwiecki, M. Paalka, M. Pawlik-Niedzwiecka, L. Raczynski, J. Raj, Z. Rudy, S. Sharma, Shivani, R. Shopa, M. Silarski, M. Skurzok, W. Wislicki, B. Zgardzinska, M. Zielinski, P. Moskal
abstract
This article reports on the feasibility of testing of the symmetry under reversal in time in a purely leptonic system constituted by positronium atoms using the J-PET detector. The present state of T symmetry tests is discussed with an emphasis on the scarcely explored sector of leptonic systems. Two possible strategies of searching for manifestations of T violation in non-vanishing angular correlations of final state observables in the decays of metastable triplet states of positronium available with J-PET are proposed and discussed. Results of a pilot measurement with J-PET and assessment of its performance in reconstruction of three-photon decays are shown along with an analysis of its impact on the sensitivity of the detector for the determination of T -violation sensitive observables.
Estimating the NEMA characteristics of the J-PET tomograph using the GATE package
P. Kowalski, W. Wiślicki, R.Y. Shopa, L. Raczyński, K. Klimaszewski, C. Curcenau, E. Czerwiński, K. Dulski, A. Gajos, M. Gorgol, N. Gupta-Sharma, B. Hiesmayr, B. Jasińska, Ł. Kapłon, D. Kisielewska-Kamińska, G. Korcyl, T. Kozik, W. Krzemień, E. Kubicz, M. Mohammed, S. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, J. Raj, K. Rakoczy, Z. Rudy, S. Sharma, S. Shivani, M. Silarski, M. Skurzok, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
A novel whole-body positron emission tomography (PET) system based on plastic scintillators is
developed by the J-PET Collaboration. It consists of plastic scintillator strips arranged axially in the
form of a cylinder, allowing the cost-effective construction of the total-body PET system. In order to
determine the properties of the scanner prototype and optimize its geometry, advanced computer
simulations were performed using the GATE (Geant4 application for tomographic emission)
software.
The spatial resolution, sensitivity, scatter fraction and noise equivalent count rate were estimated
according to the National Electrical Manufacturers Association norm, as a function of the length
of the tomograph, the number of detection layers, the diameter of the tomographic chamber and
for various types of applied readout. For the single-layer geometry with a diameter of 85 cm, a strip
length of 100 cm, a cross-section of 4 mm × 20 mm and silicon photomultipliers with an additional
layer of wavelength shifter as the readout, the spatial resolution (full width at half maximum) in
the centre of the scanner is equal to 3 mm (radial, tangential) and 6 mm (axial). For the analogous
double-layer geometry with the same readout, diameter and scintillator length, with a strip crosssection
of 7 mm × 20 mm, a noise equivalent count rate peak of 300 kcps was reached at 40 kBq cc?1
activity concentration, the scatter fraction is estimated to be about 35% and the sensitivity at the
centre amounts to 14.9 cps kBq?1. Sensitivity profiles were also determined.
A Method to Produce Linearly Polarized Positrons and Positronium Atoms with the J-PET Detector
M. Mohammed, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B.C. Hiesmayr, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, L. Raczyński, J. Raj, Z. Rudy, N.G. Sharma, S. Sharma, Shivani, M. Skurzok, M. Silarski, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
A method for creating linearly polarized positrons and ortho-positronium (o-Ps) atoms with the J-PET detector is presented. The unique geometry and properties of the J-PET tomography enable one to design a positron source such that the quantization axis for the estimation of the linear polarization of produced o-Ps can be determined on the event by event basis in a direction of the positron motion. We intend to use 22Na or other beta+ decay isotopes as a source of polarized positrons. Due to the parity violation in the beta decay, the emitted positrons are longitudinally polarized. The choice of the quantization axis is based on the known position of the positron emitter and the reconstructed position of the positronium annihilation. We show that the J-PET tomography is equipped with all needed components.
Human Tissue Investigations Using PALS Technique - Free Radicals Influence
B. Jasińska, B. Zgardzińska, G. Chołubek, M. Pietrow, M. Gorgol, K. Wiktor, K. Wysogląd, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, B.C. Hiesmayr, B. Jodłowska-Jędrych, D. Kamińska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, L. Raczyński, Z. Rudy, N.G. Sharma, S. Sharma, R. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, H. Wiktor, W. Wiślicki, M. Zieliński, P. Moskal
abstract
The positron annihilation lifetime spectroscopy was applied to the samples of the human uterine leiomyomas and the normal myometrium tissues taken from the selected place of the uterus during a surgery. The method indicated differences in values of the measured positron annihilation lifetime spectroscopy parameters (lifetimes and intensities) between healthy and diseased tissue samples. The additional measurements were performed either in darkness or in presence of visible light which influenced the free radicals present in both kind of tissues and, as a result, made changes in free annihilation and o-Ps decay lifetime and intensity values.
Preliminary Studies of J-PET Detector Spatial Resolution
M. Pawlik-Niedźwiecka, S. Niedźwiecki, D. Alfs, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. C. Hiesmayr, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pałka, L. Raczyński, J. Raj, Z. Rudy, Shivani, M. Silarski, M. Skurzok, N.G. Sharma, S. Sharma, R.Y. Shopa, A. Strzelecki, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
The J-PET detector, based on long plastic scintillator strips, was recently constructed at the Jagiellonian University. It consists of 192 modules axially arranged into three layers, read out from both sides by digital constant-threshold front-end electronics. This work presents preliminary results of measurements of the spatial resolution of the J-PET tomograph performed with 22Na source placed at selected position inside the detector chamber.
Analysis procedure of the positronium lifetime spectra for the J-PET detector
K. Dulski , B. Zgardzińska , P. Białas , C. Curceanu E. Czerwiński , A. Gajos , B. Głowacz , M. Gorgol , B. C. Hiesmayr , B. Jasińska , D. Kisielewska-Kamińska , G. Korcyl , P. Kowalski , T. Kozik , N. Krawczyk , W. Krzemień , E. Kubicz , M. Mohammed , M. Pawlik-Niedźwiecka, S. Niedźwiecki , M. Pałka , L. Raczyński , J. Raj , Z. Rudy , N. G. Sharma, S. Sharma, Shivani, R. Y. Shopa, M. Silarski , M. Skurzok , A. Wieczorek , W. Wiślicki , M. Zieliński , P. Moskal
abstract
Positron Annihilation Lifetime Spectroscopy (PALS) has shown to be a powerful tool to study the nanostructures of porous materials. Positron Emissions Tomography (PET) are devices allowing imaging of metabolic processes e.g. in human bodies. A newly developed device, the J-PET (Jagiellonian PET), will allow PALS in addition to imaging, thus combining both analyses providing new methods for physics and medicine. In this contribution we present a computer program that is compatible with the J-PET software. We compare its performance with the standard program LT 9.0 by using PALS data from hexane measurements at different temperatures. Our program is based on an iterative procedure, and our fits prove that it performs as good as LT 9.0.
Introduction of total variation regularization into filtered backprojection algorithm
L. Raczyński, W. Wiślicki, K. Klimaszewski, W. Krzemień, P. Kowalski, R. Shopa, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski A. Gajos, B. Głowacz, M. Gorgol, B. Hiesmayr, B. Jasińska, D. Kisielewska-Kamińska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, Z. Rudy, N.G. Sharma, S. Sharma, M. Silarski, M. Skurzok, A. Wieczorek, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
In this paper we extend the state-of-the-art filtered backprojection (FBP) method with application of the concept of Total Variation regularization. We compare the performance of the new algorithm with the most common form of regularizing in the FBP image reconstruction via apodizing functions. The methods are validated in terms of cross-correlation coefficient between reconstructed and real image of radioactive tracer distribution using standard Derenzo-type phantom. We demonstrate that the proposed approach results in higher cross-correlation values with respect
to the standard FBP method.
Time calibration of the J-PET detector
M. Skurzok, M. Silarski, D. Alfs, P. Bialas, Shivani, C. Curceanu , E. Czerwinski , K. Dulski , A. Gajos, B. G lowacz , M. Gorgol, B. C. Hiesmayr, B. Jasinska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik , N. Krawczyk, W. Krzemien, E. Kubicz , M. Mohammed, M. Pawlik-Niedzwiecka, S. Niedzwiecki, M. Palka, L. Raczynski , J. Raj, Z. Rudy, N. G. Sharma, S. Sharma , R. Y. Shopa , A. Wieczorek, W. Wislicki , B. Zgardzinska, M. Zielinski, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) project carried out in the Institute of Physics of the Jagiellonian University is focused on construction and tests of the first prototype of PET scanner for medical diagnostic which allows for the simultaneous 3D imaging of the whole human body using organic scintillators. The J-PET prototype consists of 192 scintillator strips forming three cylindrical layers which are optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolutions. In this article we present time calibration and synchronization of the whole J-PET detection system by irradiating each single detection module with a 22Na source and a small detector providing common reference time for synchronization of all the modules.
Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators
A. Wieczorek, K. Dulski, Sz. Niedźwiecki, D. Alfs, P. Białas, C. Curceanu, E. Czerwiński, A. Danel, A. Gajos, B. Głowacz, M. Gorgol, B. Hiesmayr, B. Jasińska, K. Kacprzak, D. Kamińska, Ł. Kapłon, A. Kochanowski, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemień, E. Kubicz, M. Kucharek, M. Mohammed, M. Pawlik-Niedźwiecka, M. Pałka, L. Raczyński, Z. Rudy, O. Rundel, N. G. Sharma, M. Silarski, T. Uchacz, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
A novel
plastic
scintillator
is developed
for
the
application
in the
digital
positron
emission
tomography
(PET).
The
novelty
of the
concept
lies
in application
of the
2-(4-styrylphenyl)
benzoxazole
as
a wavelength
shifter.
The
substance
has
not
been
used
as
scintillator
dop-
ant
before.
A dopant
shifts
the
scintillation
spectrum
towards
longer
wavelengths
making
it
more
suitable
for
applications
in scintillators
of long
strips
geometry
and
light
detection
with
digital
silicon
photomultipliers.
These
features
open
perspectives
for
the
construction
of the
cost-effective
and
MRI-compatib
le PET
scanner
with
the
large
field
of view.
In this
article
we
present
the
synthesis
method
and
characterize
performance
of the
elaborated
scintillator
by
determining
its
light
emission
spectrum,
light
emission
efficiency,
rising
and
decay
time
of
the
scintillation
pulses
and
resulting
timing
resolution
when
applied
in the
positron
emission
tomography.
The
optimal
concentratio
n of the
novel
wavelength
shifter
was
established
by
maximizing
the
light
output
and
it was
found
to be
0.05
?
for
cuboidal
scintillator
with
dimen-
sions
of 14
mm
x 14
mm
x 20
mm.
Commissioning of the J-PET Detector for Studies of Decays of Positronium Atoms
E. Czerwiński, K. Dulski, P. Białas, C. Curceanu, A. Gajos, B. Głowacz, M. Gorgol, B.C. Hiesmayr, B. Jasińska, D. Kisielewska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, N.G. Sharma, S. Sharma, R.Y. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is a detector for medical imaging of the whole human body as well as for physics studies involving detection of electron?positron annihilation into photons. J-PET has high angular and time resolution, and allows for measurement of spin of the positronium and the momenta and polarization vectors of annihilation quanta. In this article, we present the potential of the J-PET system for the background rejection in the decays of positronium atoms.
J-PET: A New Technology for the Whole-body PET Imaging
S. Niedźwiecki, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B.C. Hiesmayr, B. Jasińska, Ł. Kapłon, D. Kisielewska-Kamińska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, M. Pałka, L. Raczyński, Z. Rudy, N.G. Sharma, S. Sharma, R.Y. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diameter of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.
Three-dimensional Image Reconstruction in J-PET Using Filtered Back-projection Method
R.Y. Shopa, K. Klimaszewski, P. Kowalski, W. Krzemień, L. Raczyński, W. Wiślicki, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. Hiesmayr, B. Jasińska, D. Kisielewska-Kamińska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, Z. Rudy, N.G. Sharma, S. Sharma, M. Silarski, M. Skurzok, A. Wieczorek, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
We present a method and preliminary results of the image reconstruction in the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic Emission), interactions of the 511 keV photons with a cylindrical detector were generated. Pairs of such photons, flying back-to-back, originate from e+e? annihilations inside a 1 mm spherical source. Spatial and temporal coordinates of hits were smeared using experimental resolutions of the detector. We incorporated the algorithm of the 3D Filtered Back Projection, implemented in the STIR and TomoPy software packages, which differ in approximation methods. Consistent results for the Point Spread Functions of ? 5 ÷ 7 mm and ? 9 ÷ 20 mm were obtained, using STIR, for transverse and longitudinal directions, respectively, with no time-of-flight information included.
Human Tissues Investigation Using PALS Technique
B. Jasińska, B. Zgardzińska, G. Chołubek, M. Gorgol, K. Wiktor, K. Wysogląd, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, B. Hiesmayr, B. Jodłowska-Jędrych, D. Kamińska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, L. Raczyński, Z. Rudy, N.G. Sharma, S. Sharma, R. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, H. Wiktor, W. Wiślicki, M. Zieliński, P. Moskal
abstract
Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues were observed. For all studied patients, it was found that the values of the free annihilation and ortho-positronium lifetime are larger for the tumorous tissues than for the healthy ones. For most of the patients, the intensity of the free annihilation and ortho-positronium annihilation was smaller for the tumorous than for the healthy tissues. For the first time, in this kind of studies, the 3? fraction of positron annihilation was determined to describe changes in the tissue porosity during morphologic alteration.
Human Tissues Investigation Using PALS Technique
B. Jasińska, B. Zgardzińska, G. Chołubek, M. Gorgol, K. Wiktor, K. Wysogląd, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, B.C. Hiesmayr, B. Jodłowska-Jędrych, D. Kamińska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, L. Raczyński, Z. Rudy, N.G. Sharma, S. Sharma, R. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, H. Wiktor, W. Wiślicki, M. Zieliński, P. Moskal
abstract
Samples of uterine leiomyomatis and normal tissues taken from patients
after surgery were investigated using the Positron Annihilation Lifetime
Spectroscopy (PALS). Significant differences in all PALS parameters
between normal and diseased tissues were observed. For all studied patients,
it was found that the values of the free annihilation and orthopositronium
lifetime are larger for the tumorous tissues than for the healthy
ones. For most of the patients, the intensity of the free annihilation and
ortho-positronium annihilation was smaller for the tumorous than for the
healthy tissues. For the first time, in this kind of studies, the 3gamma fraction
of positron annihilation was determined to describe changes in the tissue
porosity during morphologic alteration.
Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement
M. Palka, P. Strzempek, G. Korcyl, T. Bednarski, S. Niedzwiecki, P. Bialas, E. Czerwinski, K. Dulski, A. Gajos, B. Glowacz, M. Gorgol, B. Jasinska, D. Kaminska, M. Kajetanowicz, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, M. Mohhamed, L. Raczynski, Z. Rudy, O. Rundel, P. Salabura, NG. Sharma, M. Silarski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, B. Zgardzinska, P. Moskal
abstract
In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of sigma (TOF) approximate to 68 ps is by factor of two better with respect to the current TOF-PET systems.
Calculation of the time resolution of the J-PET tomograph using kernel density estimation
L. Raczyński, W. Wiślicki, W. Krzemień, P. Kowalski, D. Alfs, T. Bednarski, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. Hiesmayr, B. Jasińska, D. Kamińska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, Z. Rudy, O. Rundel, N. Gupta-Sharma, M. Silarski, J. Smyrski, A. Strzelecki, A. Wieczorek, B. Zgardzińska, M. Zieliński and P. Moskal
abstract
In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30?cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.
Measurement of gamma quantum interaction point in plastic scintillator with WLS strips
J. Smyrski, D. Alfs, T. Bednarski, P. Białas, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, N. Gupta-Sharma, M. Gorgol, B. Jasińska, M. Kajetanowicz, D. Kamińska, G. Korcyl, P. Kowalski, W. Krzemień, N. Krawczyk, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, P. Salabura, M. Silarski, A. Strzelecki, A. Wieczorek, W. Wiślicki, J. Wojnarska, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator
bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting
(WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen
BC-482A WLS strips we achieved a spatial resolution of 5 mm (?) for annihilation photons from a 22Na isotope.
The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner
which is being developed by the J-PET collaboration.
J-PET: A Novel TOF -PET scanner using Organic Scintillators
N.G. Sharma, M. Silarski, D. Alfs, T. Bednarski, P. Białas, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. Jasińska, D. Kamińska, G. Korcyl, P. Kowalski, W. Krzemień, N. Krawczyk, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, O. Rundel, A. Wieczorek, W. Wislicki, M. Zieliński, B. Zgardzińska, P. Moskal
abstract
Positron Emission Tomography (PET) is one of the most advanced nuclear medicine imaging techniques that
have potential to identify many diseases (like cancers, heart diseases, neurological disorders and other abnormalities) in vivo in the earliest stages. However, production of PET modalities for covering the whole human body is economically unrealistic when applying the current technologies. In order to achieve a goal of more economical PET scanner with large geometrical acceptance and improved time resolution, the Jagiellonian Positron Emission Tomography (J-PET) Collaboration is realizing a new project aiming at construction of TOF-PET detector using plastic scintillators instead of crystals. Novelty of the J-PET scanner lies in: (i) application of plastic scintillators as well as in (ii) its front-end electronics which allows signal sampling in voltage domain, (iii) a trigger-less data acquisition system, and (iv) the new time and hit-position reconstruction methods. Moreover, the proposed solution enables to increase the axial field-of-view of the tomograph by extending the length of the plastic scintillator strips without changing the number of photomultipliers and electronic channels.
A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators
D. Kamińska, A. Gajos, E. Czerwiński, D. Alfs, T. Bednarski, P. Białas, C. Curceanu, K. Dulski, B. Głowacz, N. Gupta-Sharma, M. Gorgol, B. C. Hiesmayr, B. Jasińska, G. Korcyl, P. Kowalski, W. Krzemień, N. Krawczyk, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, M. Silarski, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
We present a study of the application of the Jagiellonian Positron Emission Tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition
to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps->3g decays with angular and energy resolution equal to sigma(theta) = 0.4^{circ} and sigma(E) = 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pileups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.
Determination of the 3gamma Fraction from Positron Annihilation in Mesoporous Materials for Symmetry Violation Experiment with J-PET Scanner
B. Jasińska, M. Gorgol, M. Wiertel, R. Zaleski, D. Alfs, T. Bednarski, P. Białas, E. Czerwiński, K. Dulski, A. Gajos B. Głowacz, D. Kamińska, Ł. Kapłon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, L. Raczyński, Z. Rudy, O. Rundel, N.G. Sharma, M. Silarski, A. Słomski, A. Strzelecki, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, P. Moskal
abstract
Various mesoporous materials were investigated to choose the best material for experiments requiring high yield of long-lived positronium. We found that the fraction of 3? annihilation determined using ?-ray energy spectra and positron annihilation lifetime spectra (PAL) changed from 20% to 25%. The 3? fraction and o-Ps formation probability in the polymer XAD-4 is found to be the largest. Elemental analysis performed using scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscope EDS shows high purity of the investigated materials.
Sampling FEE and Trigger-less DAQ for the J-PET Scanner
G. Korcyl, D. Alfs, T. Bednarski, P. Białas, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, B. Jasińska, D. Kamińska Ł. Kapłon, P. Kowalski, T. Kozik, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, O. Rundel, N.G. Sharma, M. Silarski, A. Słomski, K. Stoła, A. Strzelecki, A. Wieczorek, W. Wiślicki, B.K. Zgardzińska, M. Zieliński, P. Moskal
abstract
In this paper, we present a complete Data Acquisition System (DAQ) together with the readout mechanisms for the J-PET tomography scanner. In general, detector readout chain is constructed out of Front-End Electronics (FEE) measurement devices such as Time-to-Digital or Analog-to-Digital Converters (TDCs or ADCs), data collectors and storage. We have developed a system capable for maintaining continuous readout of digitized data without preliminary selection. Such operation mode results in up to 8 Gbps data stream, therefore, it is required to introduce a dedicated module for on-line event building and feature extraction. The Central Controller Module, equipped with Xilinx Zynq SoC and 16 optical transceivers, serves as such true real time computing facility. Our solution for the continuous data recording (trigger-less) is a novel approach in such detector systems and assures that most of the information is preserved on the storage for further, high-level processing. Signal discrimination applies a unique method of using LVDS buffers located in the FPGA fabric.
J-PET: A Novel TOF-PFT Detector based on Plastic Scintillators
P. Moskal, D. Alfs, T. Bednarski, P. Bialas, C. Curceanu, E. Czerwinski, K. Dulski, A. Gajos, B. Glowacz, M. Gorgol, B. Hiesmayr, B. Jasinska, D. Kaminska, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, M. Mohammed, M. Pawlik-Niedzwiecka, S. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, O. Rundel, NG. Sharma, M. Silarski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, B. Zgardzinska, M. Zielinski
abstract
The purpose of the reported research is the elaboration of the method for construction of the cost-effective whole body single-bed positron emission tomography scanner enabling simultaneous PET/CT and PET/MR imaging The Jagiellonian Positron Emission Tomograph (J-PET) is built out of 192 scintillator strips arranged axially in three layers forming a cylindrical diagnostic chamber with the diameter of 85 cm and axial field of-view of 50 cm. The novelty of the concept lies in employing long strips of plastic scintillators instead of crystals as detectors of the annihilation quanta, and in using the timing of signals instead of their amplitudes for the reconstruction of Lines-of Response. To take advantage of the superior timing properties of plastic scintillators a novel multi-voltage-threshold front-end electronics was developed allowing for sampling of signals in a voltage domain. An axial arrangement of long strips of plastic scintillators, and their small light attenuation allows us to make a TOE-PET scanner with a long axial field-of-view. The presented solution opens unique possibilities of combining PET with CT and PET with MRI for scanning the same part of a patient at the same time with both methods. The relative ease of the cost effective increase of the axial field-of-view makes the J-PET tomograph competitive with respect to the current commercial PET scanners as regards sensitivity and time resolution.
Statistical Analysis of Time Resolution of the J-PET Scanner
L. Raczynski, W. Wislicki, P. Kowalski, W. Krzemien, D. Alfs, T. Bednarski, P. Bialas, C. Curceanu, E. Czerwinski, K. Dulski, A. Gajos, B. Glowacz, M. Gorgol, B. Hiesmayr, B. Jasinska, D. Kaminska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, M. Pawlik-Niedzwiecka, S. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, NG. Sharma, M. Silarski, J. Smyrski, A. Strzelecki, A. Wieczorek, B. Zgardzinska, M. Zielinski, P. Moskal
abstract
The commercial Positron Emission Tomography (PET) scanners use inorganic crystal scintillators for the detection of gamma photons. The Jagiellonian-PET (J-PET) detector exhibits high time resolution due to use of fast plastic scintillators and dedicated electronics circuits. Since the time resolution of PET scanner is influenced by numerous factors, e.g. a type of photomultipliers attached to the scintillators, the optimal selection of components of the J-PET system requires detailed understanding of the method for calculation the time resolution. In this paper we show the idea of this method, based on statistical analysis of the observed signals on the photomultiplier's output. The method is tested using signals registered by means of the single detection module of the J-PET scanner built out from 30 cm long plastic scintillator strips. We investigate two main factors affecting the photon registration probability, photomultipliers quantum efficiency and photomultipliers transit time spread. We demonstrate that the quantum efficiency of photomultipliers represents the most important factor influencing overall performance of the J-PET scanner.
Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph
P. Moskal, D. Alfs, T. Bednarski, P. Bialas, C. Curceanu, E. Czerwinski, K. Dulski, A. Gajos, B. Glowacz, N. Gupta-Sharma, M. Gorgol, BC. Hiesmayr, B. Jasinska, D. Kaminska, O. Khreptak, G. Korcyl, P. Kowalski, W. Krzemien, N. Krawczyk, E. Kubicz, M. Mohammed, S. Niedzwiecki, M. Pawlik-Niedzwiecka, L. Raczynski, Z. Rudy, M. Silarski, J. Smyrski, A. Wieczorek, W. Wislicki, B. Zgardzinska, M. Zielinski
abstract
Discrete symmetries such as parity (P), charge-conjugation (C) and time reversal (T) are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C) and its combination with parity (CP) constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET) which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i)spin vector of the ortho-positronium atom, (ii) momentum vectors of photons originating from the decay of positronium, and (iii) linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium Na-22 isotope. Information about the polarization vector of ortho-positronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the ortho-positronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.
Kaonic helium-4 L-series yield measurement at 2.25 g/l density by SIDDHARTA-2 at DAFNE
F. Sgaramella, M. Bazzi, A. Clozza, C. Curceanu, L. De Paolis, K. Dulski, C. Guaraldo, M. Iliescu, A. Khreptak, S. Manti, F. Napolitano, A. Scordo, F. Sirghi, A. Spallone, M. Miliucci, F. Artibani, F. Clozza, M. Cargnelli, J. Marton, M. Tüchler, J. Zmeskal, L. Abbene, A. Buttacavoli, F. Principato, D. Bosnar, I. Friščić, M. Bragadireanu, G. Borghi, M. Carminati, G. Deda, C. Fiorini, R. Del Grande, M. Iwasaki, P. Moskal, S. Niedźwiecki, M. Silarski, M. Skurzok, H. Ohnishi, K. Toho, C. Yoshida, D. Sirghi, K. Piscicchia
published in: Acta Phys. Pol. B Proc. Suppl. 17 (2024) 1-A8
This article presents the results of the kaonic helium-4 measurement conducted by the SIDDHARTA-2 experiment, aiming to provide crucial insights into the low-energy strong interaction in the strangeness sector. High-precision X-ray spectroscopy is used to examine the interaction between negatively charged kaons and nuclei in atomic systems. The SIDDHARTA-2setup was optimized through the kaonic helium-4 measurement in preparation for the challenging kaonic deuterium measurement. The kaonic helium-4 measurement at a new density of 2.25 g/l is reported, providing the absolute and relative yields for the L-series transitions, which are essential data for understanding kaonic atom cascade processes.
The measurement of the E2 nuclear resonance effects in kaonic atoms at DA?NE: The KAMEO proposal
L. De Paolis, L. Abbene, M. Bazzi, M. Bettelli, G. Borghi, D. Bosnar, M. Bragadireanu, A. Buttacavoli, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, C. Fiorini, I. Friscic, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, J. Obertova, O. Ohnishi, K. Piscicchia, F. Principato, Y. Sada, A. Scordo, F. Sgaramella, M. Silarski, D.L. Sirghi, F. Sirghi, M. Skurzok, S. Wycech, A. Spallone, K. Toho, M. Tüchler, C. Yoshida, A. Zappettini, J. Zmeskal, C. Curceanu
published in: EPJ Web of Conferences 291, 05003 (2024)
KAMEO (Kaonic Atoms Measuring Nuclear Resonance Effects Ob-servables) is a proposal for an experiment aiming to perform the first consistent measurement of the E2 nuclear resonance effects in kaonic molybdenum A=94,96,98,100 isotopes. The E2 nuclear resonance mixes atomic states, due to the electrical quadrupole excitation of nuclear rotational states. It occurs in atoms having the energy of a nuclear excitation state closely matching an atomic de-excitation state energy, and affects the rates of X-ray atomic transitions matching the energy of the resonance. The measurement E2 nuclear resonance effect in KMO isotopes allows the study of the strong kaon-nucleus interaction in a rotational excited nuclear state. Moreover, the effect enables the K- to access an inner atomic level not easily reachable by the kaon normal cascade, due to the nuclear absorption. The KAMEO proposed apparatus consists of 4 enriched Mo A=94,96,98,100 isotope strips, exposed to the kaons produced by the DA?NE collider, for kaonic atoms formation, with a high-purity germanium detector, cooled with liquid nitrogen, used to measure the X-ray atomic transitions. The DA?NE collider is located at the National Laboratories of Frascati (LNF-INFN), in Italy. It is already suited for kaonic atoms measurement by the SIDDHARTA-2 collaboration.
Kaonic atoms with SIDDHARTA-2 at the DAFNE collider
F. Sirghi, L. Abbene, M. Bazzi, D. Bosnar, M. Bragadireanu, A. Buttacavoli, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, L. De Paolis, C. Fiorini, I. Friscic, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, F. Sgaramella, S. Niedźwiecki, O. Ohnishi, K. Piscicchia, Y. Sada, A. Scordo, M. Silarski, D.L. Sirghi, M. Skurzok, A. Spallone, S. Wycech, K. Toho, M. Tüchler, C. Yoshida, J. Zmeskal, C. Curceanu
published in: EPJ Web of Conferences 291, 01008 (2024)
. The most important information still missing in the field of the low-energy antikaon-nucleon interactions studies is the experimental determination of the hadronic energy shift and width of kaonic deuterium.
This measurement will be performed by the SIDDHARTA-2 experiment, installed at the DA?NE collider
and presently in data taking campaign. The precise measurement of the shift and width of the 1s level with
respect to the purely electromagnetic calculated values, generated by the presence of the strong interaction,
through the measurement of the X-ray transitions to this level, in kaonic hydrogen, was performed by the SIDDHARTA collaboration, the kaonic deuterium is underway by SIDDHARTA-2. These measurement will allow
the first precise experimental extraction of the isospin dependent antikaon-nucleon scattering lengths, fundamental quantities for understanding low-energy QCD in the strangeness sector. The experimental challenge of
the kaonic deuterium measurement is the very small X-rays yield, the even larger width (compared to kaonic hydrogen), and the difficulty to perform X-rays spectroscopy with weak signals in the high radiation environment
of DA?NE. It was, therefore, crucial to develop a new apparatus involving large-area X-rays detector system,
to optimize the signal and to control and by improve the signal-to-background ratio by gaining in solid angle,
increasing the timing capability, and as well implementing additional charge particle tracking veto systems.
Test for non-relativistic QED in decays of positronium atoms
S. Sharma, K. Dulski, P. Moskal
published in: EPJ Web of Conferences 291 (2024) 03012
Positronium (Ps) is a bound state of electron and positron governed by electromagnetic interactions. Precise measurement of its decay rate is an important observational parameter to test theoretical predictions derived from Non-Relativistic Quantum Electrodynamics (NRQED). In this work, we present a new method for measuring the decay rate of Ps atoms, which has the potential to improve the precision and thus the description of the behavior of particles in bound states and to provide insight into the non-relativistic regime of QED.
Feasibility study of positronium imaging with Biograph Vision Quadra and Modular J-PET
S. Parzych, J. Baran, E. Yitayew Beyene, M. Conti, A. Coussat, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, K. Valsan Eliyan, A. Gajos, B. Hiesmayr, A. Jędruszczak, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, G. Łapkiewicz, L. Mercolli, W. Migdał, S. Moyo, W. Mryka, S. Niedźwiecki, E. Pérez Del Río, L. Raczyński, A. Rominger, H. Sari, S. Sharma, K. Shi, S. Shivani, R. Shopa, M. Skurzok, W.M. Steinberger, E. Stępień, P. Tanty, F. Tayefi, K. Tayefi Ardebili, W. Wiślicki, P. Moskal
published in: 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors
Positronium Imaging is gaining interest as a new promising method that may improve the diagnostic specificity of Positron Emission Tomography. Recently, the first ex-vivo and in-vivo positronium lifetime images were demonstrated by means of the dedicated multi-photon J-PET system. The latest upgrades of the Biograph Vision Quadra (Siemens Healthineers) to the singles mode acquisition open the possibility of multi-photon imaging. In this simulation-based work, sensitivity of both systems has been assessed as a function of the energy window applied for registration of the prompt photon. The research was conducted using four radioisotopes: 124 I, 68 Ga, 44 Sc, 22 Na, which were chosen due to their medical or laboratory utilization. Simulations were performed with the GATE software. The result indicates that Biograph Vision Quadra provides about 400 times higher sensitivity with respect to the modular J-PET prototype used to demonstrate the first positronium images, assuming full energy acquisition of the prompt photon.
Performance of NEMA characteristics of Modular J-PET
F. Tayefi Ardebili, S. Niedźwiecki, J. Baran, E. Beyene, D. Borys, K. Brzezinski, N. Chug, A. Coussat, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, K. Eliyan, J. Gajewski, A. Gajos, B. Hiesmayr, A. Jędruszczak, K. Kacprzak, M. Kajetanowicz, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, G. Korcyl, T. Kozik, W. Krzemień, D. Kumar, G. Łapkiewicz, W. Migdał, S. Moyo, W. Mryka, S. Parzych, E. Pérez del Río, L. Raczyński, S. Sharma, S. Shivani, R. Shopa, M. Skurzok, P. Tanty, K. Tayefi Ardebili, W. Wislicki, E. Stępień, P. Moskal
published in: 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors
The Modular J-PET scanner, developed by the J-PET collaboration, is a new prototype PET scanner developed based on axially arranged plastic scintillators as a large axial field of view (50cm) affordable tomograph. In this study, the performance characteristics of the scanner were evaluated according to NEMA NU2-2018 standards using Monte Carlo simulation. In order to ensure the selection of true coincidence events, certain criteria were established. Specifically, each photon emitting from a single annihilation must deposit at least 200 keV within 4 ns of a coincidence time window. The preliminary results showed that the sensitivity profile peak was 4 cps/kBq at the center of the detector, While the scatter fraction was estimated to be 39% using the single slice rebinning algorithm. Spatial resolution was estimated around 4.5 mm in the radial and tangential direction and 18 mm in the axial direction.
Normalization and scatter corrections for the J-PET scanner
A. Coussat, W. Krzemień, J. Baran, S. Parzych, L. Raczyński, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, B. Hiesmayr, K. Valsan Eliyan, A. Jędruszczak, K. Kacprzak, A. Gajos, T. Kaplanoglu, Ł. Kapłon, K. Klimaszewski, T. Kozik, G. Łapkiewicz, G. Korcyl, S. Moyo, D. Kumar, W. Mryka, S. Niedźwiecki, S. Sharma, E. Pérez Del Río, S. Shivani, R. Shopa, P. Tanty, M. Skurzok, K. Tayefi, F. Tayefi, E. Stępień, W. Wiślicki, P. Moskal
published in: 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors
The Jagiellonian PET scanner is a cost-effective large axial FOV Positron Emission Tomography technology that enables multi-photon imaging and is currently under development at the Jagiellonian University. The current 50 cm prototype, named Modular J-PET, is being investigated for various applications. It is well known that PET data can be affected by several effects during acquisition, such as scattered gamma photons or variations in detection efficiency. Consequently, achieving the reconstruction of images of satisfactory quality requires a set of corrections to be applied to each line-of-response. This summary discusses the implementation and performance of scatter and normalization corrections for the Modular J-PET, and their extension prior to the assembly of a total-body Jagiellonian PET scanner. Normalization correction is achieved using component-based normalization, a method particularly suitable for large scanners with a high number of lines-of-response. Scatter correction is achieved using an extension of the single scatter simulation technique that incorporates time-of-flight information. Reconstruction of reference phantoms based on Monte Carlo simulations highlight improvements in image quality. The application of normalization reduces the non-uniformity in the reconstructed image by a factor of 10 in the axial direction and 2 in the radial direction.
SIDDHARTA-2 veto system design and performance for kaonic atoms studies at DAFNE
F. Sgaramella, M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, L. De Paolis, L. Fabbietti, C. Fiorini, I. Friscic, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Ohnishi, K. Piscicchia, Y. Sada, A. Scordo, M. Silarski, D. Sirghi, F. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tuchler, C. Yoshida, J. Zmeskal, C. Curceanu
published in: EPJ Web Conf. 290 (2023) 06005
Light kaonic atoms spectroscopy provides a unique approach to study the low-energy strong interaction in the strangeness sector. Precise measurements of X-ray emission from light kaonic atoms provide valuable information on kaon-nucleus interaction at threshold without the need for extrapolation as required in scattering experiments. The SIDDHARTA-2 experiment at the DA?NE collider of INFN-LNF is now poised to perform the challenging measurements of the K?- d 2p -> 1s transition to extract the isospin-dependent antikaonnucleon scattering lengths. To achieve this goal, the background reduction is a crucial factor. This paper provides an overview of the SIDDHARTA-2 Veto-1 system, which uses scintillators outside the vacuum chamber to detect charged particles produced by K? absorption by the nucleus. The arrival time of these particles is correlated with the position where the kaonic atom has been created inside the setup, allowing for the rejection of kaons stopped outside the target cell, which is a critical component for reducing the background and improve the accuracy of the measurement.
Investigating the E2 Nuclear Resonance Effects in Kaonic Atoms: The KAMEO Proposal
L. De Paolis, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, C. Fiorini, I. Friscic, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, O. Ohnishi, K. Piscicchia, Y. Sada, A. Scordo, F. Sgaramella, M. Silarski, D.L. Sirghi, F. Sirghi, M. Skurzok, S. Wycech, A. Spallone, K. Toho, M. Tüchler, C. Yoshida, J. Zmeskal, C. Curceanu
published in: EPJ Web of Conferences 290, 06003 (2023)
The E2 nuclear resonance effect in kaonic atoms occurs when the energy of atomic de-excitation closely matches the energy of nuclear excitation, leading to the attenuation of some X-ray lines in the resonant isotope target. This phenomenon provides crucial information on the strong interaction between kaons and nuclei. The only nuclear E2 resonance effect observed so far was in the K? ?9842Mo isotope, measured by G. L. Goldfrey, G-K. Lum, and C. E. Wiegand at Lawrence Berkeley Laboratory in 1975. However, the 25 hours of data taking were not sufficient to yield conclusive results. In four kaonic Molybdenum isotopes (9442Mo, 9642Mo, 9842and Mo, and 10042Mo), the nuclear E2 resonance effect is expected to occur at the same transition with similar energy values. To investigate this, the KAMEO (Kaonic Atoms Measuring Nuclear Resonance Effects Observables) experiment plans to conduct research on kaonic Molybdenum isotopes at the DA?NE e+e? collider during the SIDDHARTA-2 experiment. The experimental strategy involves exposing four solid strip targets, each enriched with one Molybdenum isotope, to negatively charged kaons and using a germanium detector to measure X-ray transitions. In addition, a non-resonant 9242Mo isotope solid strip target will be used as a reference for standard non-resonant transitions.
Towards the first kaonic deuterium measurement with the SIDDHARTA-2 experiment
C. Curceanu, L. De Paolis, M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, K. Dulski, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, P. Levi Sandri, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Onishi, K. Piscicchia, Y. Sada, A. Scordo, F. Sgaramella, M. Silarski, D. L. Sirghi, F. C. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tuchler, C. Yoshida, J. Zmeskal
published in: PoS CORFU2022 (2023) 039
The SIDDHARTA-2 experiment is presently installed at the interaction point of the DA??NE electron-positron collider of the National Laboratories of Frascati (LNF-INFN), in Italy, ready to perform the first measurement of the 2p?1s2p?1s x-ray transition in kaonic deuterium. This measurement, together with that of the kaonic hydrogen 2p?1s2p?1s x-ray transition, performed by the SIDDHARTA experiment in 2009, will allow the determination of antikaon-nucleon isospin-dependent scattering lengths. This paper presents a description of the SIDDHARTA-2 setup, which is getting ready for the kaonic deuterium measurement.
Investigating the E2 nuclear resonance effect in kaonic atoms
L. De Paolis, M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, P. King, A. Khreptak, P. Levi Sandri, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Onishi, K. Piscicchia, Y. Sada, A. Scordo, F. Sgaramella, H. Shi, M. Silarski, D. L. Sirghi. F. Sirghi, M. Skurzok, S. Wycech, A. Spallone, K. Toho, M. Tüchler, O. Vazquez Doce, C. Yoshida, J. Zmeskal and C. Curceanu
published in: J. Phys.: Conf. Ser. 2446 (2023) 012038
The nuclear E2 resonance effect occurs when an atomic de-excitation energy is closely matched by a nuclear excitation energy. It produces an attenuation of some of the atomic X-ray lines in the resonant isotope target. Investigating the nuclear E2 resonance effect in kaonic atoms, important information about kaon-nucleus strong interaction can be provided. The only ${K}^{-}{-}_{42}^{98}mathrm{Mo}$ nuclear resonance effect was measured by G. L. Goldfrey, G- K. Lum and C. E. Wiegand at Lawrence Berkeley Laboratory, in 1975. The nuclear E2 resonance effect was observed in 25 hours of data taking, not enough to provide a conclusive result. In four kaonic Molybdenum isotopes (${}_{42}^{94}mathrm{Mo}$, ${}_{42}^{96}mathrm{Mo}$, ${}_{42}^{98}mathrm{Mo}$ and ${}_{42}^{100}mathrm{Mo}$), the nuclear E2 resonance effect is expected at the same transition, with similar energy values. The KAMEO (Kaonic Atoms Measuring nuclear resonance Effects Observables) experiment plans to study the E2 nuclear resonance effect in kaonic Molybdenum isotopes at the DA?NE e+e? collider, during the SIDDHARTA-2 experiment. The experimental strategy consists of exposing four solid strip targets, each enriched with one Molybdenum isotope, to negatively charged kaons, using a germanium detector for X-ray transition measurements. A further exposure of a non-resonant ${}_{42}^{92}mathrm{Mo}$ isotope solid strip target will be used as reference for standard non-resonant transitions.
Kaonic atoms measurements with SIDDHARTA-2
F. Sgaramella, M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, L. De Paolis, K. Dulski, L. Fabbietti, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, A. Khreptak, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Ohnishi, K. Piscicchia, Y. Sada, A. Scordo, H. Shi, M. Silarski, D. Sirghi, F. Sirghi, M .Skurzok, A. Spallone, K. Toho, M. Tüchler, C. Yoshida, J. Zmeskal, C. Curceanu
published in: J. Phys.: Conf. Ser. 2446 (2023) 012023
The SIDDHARTA-2 collaboration is aiming to perform the challenging measurement of kaonic deuterium X-ray transitions to the ground state. This will allow to extract the isospin-dependent antikaon-nucleon scattering lengths, providing input to the theory of Quantum Chromodynamics (QCD) in the non-perturbative regime with strangeness. This work describes the SIDDHARTA-2 experimental apparatus and presents the results obtained during the commissioning phase realized with kaonic helium measurements. In particular, the first observation of the kaonic helium transitions to the 3s level (M-lines), reported in this work, represents a new source of information to study the kaonic helium cascade process and demonstrates the potential of the SIDDHARTA-2 apparatus, in the view of the ambitious kaonic deuterium measurement.
The SIDDHARTA-2 experiment: preparation for the first kaonic deuterium measurement
L. De Paolis, M. Bazzi, D. Bosnar, M. Bragadireanu, M. Cargnelli, M. Carminati, A. Clozza, G. Deda, R. Del Grande, K. Dulski, C. Fiorini, I. Friščić, C. Guaraldo, M. Iliescu, M. Iwasaki, P. King, A. Khreptak, P. Levi Sandri, S. Manti, J. Marton, M. Miliucci, P. Moskal, F. Napolitano, S. Niedźwiecki, H. Onishi, K. Piscicchia, Y. Sada, A. Scordo, F. Sgaramella, H. Shi, M. Silarski, D. L. Sirghi. F. Sirghi, M. Skurzok, A. Spallone, K. Toho, M. Tüchler, C. Yoshida, J. Zmeskal and C. Curceanu
published in: PoS ICHEP2022 (2022) 1003
The SIDDHARTA-2 experiment aims to perform the first measurement of the kaonic deuterium 2p -> 1s x-ray transitions. The apparatus is presently installed at the interaction region of the DAFNE electron-positron collider at the National Laboratories of Frascati (LNF-INFN), in Italy. Kaonic deuterium and kaonic hydrogen 2p -> 1s x-ray transitions measurements, the latter one already performed by the SIDDHARTA collaboration, allow the determination of antikaon-nucleon scattering lengths. A description of the SIDDHARTA-2 apparatus in preparation for the kaonic deuterium measurement is provided in this paper.
Potential of modular J-PET for applications in the field of particle and medical physics
S. Sharma, K. Kacprzak, K. Dulski, S. Niedźwiecki, P. Moskal
published in: J. Phys. Conf. Ser. 2374 (2022) 012040
Modular J-PET is the new prototype of the Jagiellonian Positron Emission Tomograph. The portability feature due to its modular design makes it a unique tomograph with a larger axial field of view of 50 cm. The complete ring is composed of 24 modules that can be configured as a diagnostic chamber with a diameter of approximately 76 cm or as a detection setup consisting of several modules for experimental studies where multiple photons are generated in a single event. The J-PET collaboration explicitly studies the decays of the positronium atom (Ps), which is a bound state of electron and positron that self-annihilate into multiple photons. The modular J-PET provides a significant phase space covrage for the registration of photons originating from the decays of Ps atoms. In this paper, we discuss the properties of the modular J-PET and its potential applications in medical and particle physics.
From tests of discrete symmetries to medical imaging with J-PET detector
P. Moskal, J. Baran, N. Chug, C. Curceanu, E. Czerwiński, M. Dadgar, K. Dulski, J. Gajewski, A. Gajos, M. Gorgol, B.C. Hiesmayr, B. Jasińska, K. Kacprzak, Ł. Kapłon, H. Karimi, K. Klimaszewski, P. Konieczka, G. Korcyl, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, D. Kumar, S. Niedźwiecki, D. Panek, S. Parzych, E. Perez del Rio, L. Raczyński, J. Raj, A. Ruciński, S. Sharma, Shivani, R.Y. Shopa, M. Silarski, M. Skurzok, E.Ł. Stępień, M. Szczepanek, F. Tayefi, W. Wiślicki
published in: PoS PANIC2021 (2022) 033
We present results on CPT symmetry tests in decays of positronium performed with the precision at the level of 10?4, and positronium images determined with the prototype of the J-PET tomograph. The first full-scale prototype apparatus consists of 192 plastic scintillator strips readout from both ends with vacuum tube photomultipliers. Signals produced by photomultipliers are probed in the amplitude domain and are digitized by FPGA-based readout boards in triggerless mode. In this contribution we report on the first two- and three-photon positronium images and tests of CPT symmetry in positronium decays.
Positronium life-time as a new approach for cardiac masses imaging
E. Stępień E. Kubicz, G. Grudzień, K. Dulski, B. Leszczyński, P. Moskal
published in: European Heart Journal, Vol. 42, Supp.1, (2021) 3279
Studies of discrete symmetries in decays of positronium atoms
E. Czerwiński, C. Curceanu, K. Dulski, A. Gajos, M. Gorgol, A. Heczko, B. C. Hiesmayr, B. Jasińska, D. Kisielewska, G. Korcyl, B. Korzeniak, P. Kowalski, T. Kozik, W. Krzemień, E. Kubicz, W. Migdał, M. Mohammed, S. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, J. Raj, Z. Rudy, S. Sharma, S. Shivani, R. Y. Shopa, M. Silarski, M. Skurzok, W. Wiślicki, B. Zgardzińska, M. Zieliński and P. Moskal
published in: EPJ Web Conf. 181 (2018) 01019
A positronium - a bound state of electron and positron - is an eigenstate of parity and charge conjugation operators which decays into photons. It is a unique laboratory to study discrete symmetries whose precision is limited, in principle, by the effects due to the weak interactions expected at the level of 10?14 and photon-photon interactions expected at the level of 10-9.
The Jagiellonian Positron Emission Tomograph (J-PET) is a detector for medical imaging as well as for physics studies involving detection of electronpositron annihilation into photons. The physics case covers the areas of discrete symmetries studies and genuine multipartite entanglement. The J-PET detector has high angular and time resolution and allows for determination of spin of the positronium and the momenta and polarization vectors of annihilation quanta. In this article, we present the potential of the J-PET system for studies of discrete symmetries in decays of positronium atoms.
J-PET: A novel TOF-PET detector based on plastic scintillators
Paweł Moskal, Dominika Alfs, Tomasz Bednarski, Piotr Białas, Catalina Curceanu, Eryk Czerwiński, Kamil Dulski, Aleksander Gajos, Bartosz Głowacz, Marek Gorgol, Beatrix Hiesmayr, Bożena Jasińska, Daria Kamińska, Grzegorz Korcyl, Paweł Kowalski, Tomasz Kozik, Wojciech Krzemień, Ewelina Kubicz, Muhsin Mohammed, Monika Pawlik-Niedźwiecka, Szymon Niedźwiecki, Marek Pałka, Lech Raczyźski, Zbigniew Rudy, Oleksandr Rundel, Neha Gupta Sharma, Michał Silarski, Jerzy Smyrski, Adam Strzelecki, Anna Wieczorek, Wojciech Wiślicki, Bożena Zgardzińska, Marcin Zieliński
published in: IEEE Xplore: Nucl. Sci. Symp., Med. Imag. Conf. and Room-Temp. Semiconductor Detector Workshop, DOI:10.1109/NSSMIC.2016.8069617
Statistical Analysis of Time Resolution of the J-PET Scanner
L. Raczyński, W. Wiślicki, P. Kowalski, W. Krzemień, D. Alfs, T. Bednarski, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. Hiesmayr, B. Jasińska, D. Kamińska, G. Korcyl, T. Kozik, N. Krawczyk, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, Z. Rudy, O. Rundel, N. Gupta Sharma, M. Silarski, J. Smyrski, A. Strzelecki, A. Wieczorek, B. Zgardzińska, M. Zieliński, P. Moskal
published in: IEEE Xplore: Nucl. Sci. Symp., Med. Imag. Conf. and Room-Temp. Semiconductor Detector Workshop, DOI:10.1109/NSSMIC.2016.8069407
Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph
P. Moskal, D. Alfs, T. Bednarski, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, N. Gupta-Sharma, M. Gorgol, B. C. Hiesmayr, B. Jasińska, D. Kamińska, O. Khreptak, G. Korcyl, P. Kowalski, W. Krzemień, N. Krawczyk, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, M. Silarski, J. Smyrski, A. Wieczorek, W. Wiślicki, B. Zgardzińska, and M. Zieliński
published in: EPJ Web Conf. 130 (2016) 07015
Discrete symmetries such as parity (P), charge-conjugation (C) and time reversal (T) are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C) and its combination with parity (CP) constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET) which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i) spin vector of the ortho-positronium atom, (ii) momentum vectors of photons originating from the decay of positronium, and (iii) linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the
data collection with high statistics will commence in the year 2017.
J-PET detector system for studies of the electron-positron annihilations
M. Pawlik-Niedźwiecka, O. Khreptak, A. Gajos, A. Wieczorek, D. Alfs, T. Bednarski, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, B. Głowacz, N. Gupta-Sharma, M. Gorgol, B. C. Hiesmayr, B. Jasińska, D. Kamińska, G. Korcyl, P. Kowalski, W. Krzmień, N. Krawczyk, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, L. Raczyński, Z. Rudy, M. Silarski, W. Wiślicki, B. Zgardzińska, M. Zieliński, and P. Moskal
published in: EPJ Web Conf. 130 (2016) 07020
Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.
A novel TOF-PET detector based on plastic scintillators
W. Krzemien, D. Alfs, T. Bednarski, P. Białas, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, ´ B. Jasińska, D. Kamińska, Ł. Kapłon, G. Korcyl, P. Kowalski, T. Kozik, E. Kubicz, M. Mohammed, ´ Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, O. Rundel, N.G. Sharma, M. Silarski, A. Słomski, K. Stola, A. Strzelecki, A. Wieczorek, W. Wiślicki, B. K. Zgradzińska, M. Zieliński, P. Moskal
published in: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2015) IEEE
The Jagiellonian-PET (J-PET) collaboration is developing
a novel TOF-PET tomography scanner based mainly
on the timing of signals instead of their amplitudes for the
reconstruction of Lines-of-Response, therefore a very precise time
resolution is one of the main challenges of the project. The
novelty of the concept lies in employing long strips of plastic
scintillators instead of crystals as detectors of the annihilation
quanta. The diagnostic chamber consists of plastic scintillator
strips readout by pairs of photomultipliers arranged axially
around a cylindrical surface. To take advantage of the superior
timing properties of plastic scintillators, the signals are sampled
in the voltage domain with an accuracy of 20 ps by novel ultrafast
electronics, and the data are collected by the FPGA-based
trigger-less data acquisition system. The hit-position and hittime
are reconstructed by the dedicated reconstruction methods
based on the compressing sensing theory and a library of
synchronized model signals. The solutions are subject of sixteen
patent applications. So far, a time-of-flight resolution of 125 ps
(?) was achieved for a double-strip prototype with 30 cm fieldof-view
(FOV). It is by more than a factor of two better than the
TOF resolution achievable in current TOF-PET modalities and
at the same time, the FOV of 30 cm long prototype is significantly
larger with respect to typical commercial PET devices. The axial
geometry gives unique possibilities of combining J-PET with
Computed Tomography or with Magnetic Resonance Imaging,
allowing to perform the simultaneous scan of the patient with
both methods.